T

e-business

CMPI

The Common Manageability
Programming Interface

Konrad Rzeszutek
Viktor Mihajlovski

IBM Linux Technology Center

Agenda

Tl

e-business

° =Motivation: CIMOM Provider Interfaces
=CMPI Design Principles
*Technology

=Availability
sUsage
*C++ Binding

*Remote CMPI

Tl

e | MOtivation: CIMOM Provider Interfaces

=CIM Object Managers use providers to
access and manipulate System
Management resources

*Providers must follow the
implementation rules defined by the
CIMOM (programming language,
structure)

CIM

=At the moment multiple CIMOMs are |ctient
available, all with their own,
incompatible Provider Interface

Object
Manager

.PrOVIder erters are forced to elther Dynamic Objects
SeIeCt a partICUIar CIMOM or erte (Instrumentation)
multiple providers for the same
resource

=CMPI allows to write providers running
under any CIMOM

CMPI Design Principles

Tl

e-business

*The Common Manageability Programming
Interface was designed with the following
principles in mind

f Facilitation: reduces effort to write a (CIM) provider, i.e.
CMPI memory management relieves provider from
book-keeping

f Interoperability: allows a provider (even binary) to be
deployed to each CIMOM (supporting/supported by
CMPI)

f Independence: doesn't require link libraries of any kind

f Completeness: supports all common CIM provider
functions as found in the various CIMOMSs

f Encapsulation: the provider is not concerned with
CIMOM details regarding data type implementation

CMPI Rationale ...

Tl

e-business

f Scalability: CMPI is thread-safe (reentrant) allowing to
perform many provider invocations in parallel if needed

f Remoteness: CMPI providers can easily be deployed in
a remote environment using Remote CMPI

CMPI Technology

Tl

e-business

*The primary CMPI binding is in ANSI C

f better binary compatibility than C++
f lean implementation
f but offers C++ "convenience interface"

=CIMOM/Provider calls via function tables

fincludes up- and downcalls and data manipulation
f no need for link libraries

f easily extensible (by adding function pointers at the
table's end)

=Data Types

f Simple, not managed (int, float, boolean)
f Encapsulated (String, Instance, Property)

A N smss o~ s IA'F f\:mv'\lt\ Alﬂﬁl PN LM PN PN RN PN B IA-"AINI de 7N N o~

@ “NMFEl Technology...

e-business

Management Broker

CMPIxxxFT

Mi
Driver

CMPIBrokerFT

Instances

Adaptation-layer

N\

/ 0\

MI Function

\

/

CMPIBroker

—

Encapsulated

\ Objects

CMPIxxxMh‘ -

)

Management Instrumentation

CMPI

Avalilability

Tl

e-business

*CMPI Spec hosted by The Open Group,
available via wbemSource
http://www.wbemsource.org

*CMPI Implementations

f SNIA/openCIMOM: SBLIM CMPI Adapter
f Pegasus: SBLIM CMPI Adapter, native support in 2.3
f OpenWBEM: native support as beta version

Tl

e-business

:Usage

*Determine Instrumentation Type

f Instance, Association, Method, Property, Indication
*Provide a Ml Function Table per Ml Type

f either write a factory function by hand, name format
<providername>_ Create<mytype>MlI, e.g.
Printer_CreatelnstanceMI

fuse the convenience macro CM<mytype>MIStub, e.g.
CMinstanceMIStub("Printer",...)

*Implement the Ml functions pointed to by Function Table

fe.g. InstanceMIFT: enumeratelnstances, enumerateNames,
getinstance, setinstance, createlnstance, deletelnstance,
execQuery

=Consider using the SBLIM provider skeleton generator

f http:/lIwww-124.ibm.com/developerworks/oss/cvs/sblim/psg/

usage sample

Tl

e-business

/* 1nstance MI: enumerate i1nstance names
*/

CMPIStatus PrinterEnumlnstanceNames(CMPIInstanceMl *mi,
CMPIContext *ctx, CMPIResult *result, CMPIObjectPath *
{
CMPI1Status status = {CMPI_RC OK,NULL};
CMPIObjectPath *returnedPath;
returnedPath = Printer_makePath(op);
1T (returnedPath == NULL) {
status.rc = CMPI_RC ERR_FAILED;
} else {
CMReturnObjectPath(result, returnedPath);
by
CMReturnDone(result);
return status;

/*
* Printer_makePath C version
*/

CMPI10ObjectPath * Printer_makePath(CMPIObjectPath *ref)

{
CMPIObjectPath *op = CMNewObjectPath(broker, NULL,
"MY_Printer' ,NULL);

iIT (op!=NULL) {
CMSetNameSpaceFromObjectPath(op,ref);
CMAddKey(op,"Name" ,CMPI_chars,"/dev/Ipt0™);

}

return op;

C++ Binding

Tl

e-business

*C Interface pros

f binary compatibility
f small footprint providers

=*C Interface cons

f coding is tedious (function pointers, macros)
f error handling

*C++ Convenience Support

f Wrappers the C-Interface
f Preserves binary compatibility

f Enhances usability: C++ classes and instances, error
handling via exceptions

usage sampie (C++)

Tl

e-business

// 1nstance MI: enumerate i1nstance names

CmpiStatus Printer::enumlnstanceNames(
CmpiContext &ctx, CmpiResult &result, CmpiObjectPath &op)

{
CmpiStatus status(CMP1_RC _OK);
CmpiObjectPath returnedPath;
try {

returnedPath = Printer_makePath(op);
result.returnData(returnedPath);

} catch (CmpiStatus excStatus)
status = excStatus;

+

result.returnbDone();

return status;

usage sampie C++ ...

Tl

e-business

/*
* Printer_makePath C++ version
*/

CmpiObjectPath Printer_makePath(CMPIObjectPath &ref)
{

CMPIObjectPath op(ref.gteNameSpace(),"MY_Printer');

1T (op==NULL)
throw CMPIStatus(CMPI_RC _ERR_FAILED,"Could not create
object path ");

op.setKey("'Name" ,CmpiData(''/dev/I1pt0™));

return op;

Tl

| Remote CMPI

e-business

sExtension to allow remote execution of CMPI
providers

f Available in 9/2003 via SBLIM project
*No changes needed

f The same binaries can be run locally and remotely

f CMPI layer doesn't need to be modified, as the remote
CMPI layer behaves like a regular CMPI provider

=Efficient

f Small footprint on systems not supporting a full-blown
CIMOM (door locks).

f Communication between remote provider and CIMOM
only for up-calls and final result transfer

