
Troubleshooting Pegasus
(Developer viewpoint)

Linux Technology Center - IBM

Konrad Rzeszutek

Legal Statement
This work represents the views of the author(s) and
does not necessarily reflect the views of IBM
Corporation.
The following terms are trademarks or registered
trademarks of International Business Machines
Corporation in the United States and/or other
countries: IBM (logo), A full list of U.S. trademarks
owned by IBM may be found at
http://www.ibm.com/legal/copytrade.shtml.
Linux is a registered trademark of Linus Torvalds.
Windows is a registered trademark of Microsoft
Corporation.
Other company, product, and service names may be
trademarks or service marks of others.

Agenda
• Tests Suites

– Unit Tests
– XML tools (wbemexec, wbemcli, CLI)
– SBLIM Test Suite

• Logging and tracing
– How do I use it?
– Tracing? What is that?

• Debuggers / Memory checker
– DDD with GDB
– Visual C++ 6.0
– Valgrind

• Interoperability

Unit Tests
• Unit testing components individually

– Eg. Common Classes
– Test elements without CIMOM running

• Each of the C++ modules is individually tested
through small test programs.
– TestDataTime
– TestConfig
– TestString
– TestQualifier
– … etc ..
– Tests boundary conditions, illegal conditions, etc

• If you are adding something new, do make a
unit test.

How to use it?
• TestMakefile or use the

BuildMakefile (which does the
checkout and runs TestMakefile)
– make –f TestMakefile <x>

• prestarttests (functional tests)
• poststarttests (no security, no SSL)
• tests (both above)
• standardtests

XML Tools (wbemexec)
• wbemexec (line test)

– wbmexec –d2 test.xml
– (examples of .xml files are in

tests/wetest)

XML sample
<?xml version="1.0" ?>
<CIM CIMVERSION="2.0" DTDVERSION="2.0">
<MESSAGE ID="50000" PROTOCOLVERSION="1.0">
<SIMPLEREQ>
<IMETHODCALL NAME="EnumerateInstanceNames">
<LOCALNAMESPACEPATH>
<NAMESPACE NAME=“root"/>
<NAMESPACE NAME=“cimv2"/>

</LOCALNAMESPACEPATH>
<IPARAMVALUE NAME="ClassName">
<CLASSNAME NAME=“PG_OperatingSystem"/>

</IPARAMVALUE>
</IMETHODCALL>

</SIMPLEREQ>
</MESSAGE>

</CIM>

XML Tools (wbemcli)
• wbemcli

– wbemcli ein
http://localhost:5988/root/cimv2:cim_co
mputersystem

– Output:

localhost:5988/root/cimv2:PG_ComputerSystem.Cre
ationClassName=PG_ComputerSystem,Name=konr
ad.lotus.com

XML Tools (CLI)
• CLI (Command Line WBEM Client)

– CLI ei cim_computersystem
– Output:

//Instance of Class PG_ComputerSystem
instance of class PG_ComputerSystem
{
string Caption = Computer System;
string Description = Linux version 2.4.19-4GB
(root@Pentium.suse.de)

(gcc version 3.2) #1 Fri Sep 13 13:14:56 UTC 2002;
string Status = OK;
string CreationClassName = PG_ComputerSystem;
string Name = konrad.lotus.com;
string NameFormat = IP;
… more …

SBLIM Test Suite Specification
• http://www-124.ibm.com/sblim/
• A test suite for any CIMOM
• Role matching engine
• Performs three major tests:

– Interface test
– Consistency test
– Specification test

Interface, Consistency tests
• Interface tests:

– Verify that all required provider interfaces are
properly implemented, by executing each
operation of the Instance and Association
Interfaces and interpret the returned results.

• Consistency test:
– Class and property level.
– Number of proper instances.
– Observance of threshold values.
– Checking returned values against system

values.

Specification test
• Specification test:

– The specification test makes use of the meta-
information about the model. Within this test
type, it is possible to figure out, if the provider
implements the class definition in the required
manner.

Example of interface test

class : PG_ComputerSystem
objectPath :
PG_ComputerSystem.CreationClassName=CIM_OperatingSystem \
,CSName=konrad.lotus.com

Instance enumInstanceNames

Instance delete
Expected Exception : NOT_SUPPORTED

Instance create

Output (Report card)

**
class : PG_ComputerSystem
Fri Jul 18 08:39:36 2003

--
Instance enumInstanceNames
Status : ok
RC : 1
Number of Returned Instances : 1
user time : 0 child user time : 0 ut : 0
system time : 0 child system time : 0.01 st : 0.01

….
PG_ComputerSystem

Number of Tests where Status ok : 2
Number of Tests where Status failed : 1

Logging
• Oriented towards production.

– In your code:

#include <Pegasus/Common/Logger.h>
…

Logger::put(Logger::ERROR_LOG,
“My Backup Provider”,
Logger::WARNING,
“Got error code $0 from tar,retrying…",
_tarStatus);

Tracing
• Tracing is done per component (not

per file).
• Different levels per trace:

– 1 - Function Entry/Exit
– 2 - Basic flow trace messages, low

data detail
– 3 - Inter-function logic flow, medium

data detail
– 4 - High data detail

src/Pegasus/Common/TraceComponents.h

• List of components:
– Channel
– XmlWriter
– CimData
– ProvManager
– Authorization
– Authentication
– WQL
– Thread
– .. etc ..
– ALL

How do I use it?
• Change the trace component:

– bin/cimconfig –s
traceComponents=Thread,ProvMana
ger

• Logs the data in cimserver.trc file
• Change the trace level:

– bin/cimconfig –s traceLevel=4

• See also mak/Buildmakefile for
typical trace configurations.

Debuggers

DDD with GDB
– http://www.gnu.org/software/ddd/
– GNU DDD is a graphical front-end for

command-line debuggers such as
GDB, DBX, WDB, Ladebug, JDB, XDB,
the Perl debugger, or the Python
debugger. Besides ``usual'' front-end
features such as viewing source texts,
DDD has become famous through its
interactive graphical data display,
where data structures are displayed as
graphs.

How to debug your Provider?
• Compile Pegasus and your provider with

PEGASUS_DEBUG=1 to enable –g flag
for compilation

• Install DDD and GDB
• Run ddd
• File -> Open Program. Select cimserver
• ddd shows the cimserver.cpp source code

in the main window
• Set a break at the first execution line in the

main function in the cimserver.cpp
• Type “run” in the command window (a

window under the source code).
• Type in the argument “daemon=false”

Set breakpoints
• When it stops, select File -> Open

Source.
• Select ProviderModule.cpp
• Set the breakpoint in (line 170)

– CIMProvider
*ProviderModule::load(const String &
providerName)

– In the line that says _library =
System::loadDynamicLibrary(const …)

More breakpoints.
• Type “continue” in the command window
• Use your favorite CIM Browser (or just use

the XML Tools examples mentioned earlier)
to access the CIM Provider you want to
debug (PG_OperatingSystem, for
example).

• In the DDD it will halt. Step “next” over the
code that loads the library (_library =
System::loadDynamicLibrary(..).)

• File-> Open Source. Select your source
code (OperatingSystemProvider.cpp and
OperatingSystemProviderMain.cpp).

• Set a breakpoint in where you want.
• Type “continue” in the command window.

How do I see values?

(gdb) p (const char *)providerName.getCString()
$27 = 0x8171560 "PG_OperatingSystemProvider“

(gdb) p (const char *)_fileName.getCString()
warning: can't find class named
`Pegasus::ProviderModule', as given by C++ RTTI
$28 = 0x8171580
"/home/konrad/install/lib/libOSProvider.so"

Visual C++ 6.0 debugging.
• Edit pegasus source to work around

a problem with a debugger
– Comment out a line 87 in

%PEGASUS_HOME%\src\common\IP
C\Windows.h.

– The line 87 is like "#define
PEGASUS_CONDITIONAL_NATIVE=1
"

Building Pegasus
• Install/Build Pegasus and debugger

– Set PEGASUS_ROOT environment
variable to the same value as
PEGASUS_HOME

– Set PEGUSUS_DEBUG=1 and build
Pegasus.

– Install Visual Studio with debugger (if
you don't install it yet.)

Setup Project in Microsoft Visual
C++
• Open Microsoft visual C++ 6.0 from Start

Menu
• File->Open cimserver.exe in the

%PEGASUS_HOME%\bin director.
• Project->Setting...
• Select Debug tab
• Put "-l" in Program arguments
• Select Additional DLLs in Category
• Put OperatingSystemProvider.dll from a

file list getting by selecting "..." button.
• Close Project Setting by clicking "OK".

Set breakpoints.
• File->Open

OperatingSystemProviderMain.cpp in
%PEGASUS_HOME%\src\Providers\sam
ple\InstanceProvider directory.

• Set breakpoints wherever you want in
OperatingSystemProviderMain.cpp. (You
can open any of your source code and set
break points).

• Start debugging (F5).
• Select OK for the inform

Access the Pegasus from a browser

• Use your favorite CIM Browser (or
just use the XML Tools examples
mentioned earlier) to access the CIM
Provider you want to debug
(PG_OperatingSystem, for
example).

• The break point will be hit at this
point.

Valgrind – The Gate of Death
• http://developer.kde.org/~sewardj/
• Valgrind is a GPL'd tool to help you

find memory-management problems
in your programs. When a program
is run under Valgrind's supervision,
all reads and writes of memory are
checked, and calls to
malloc/new/free/delete are
intercepted.

What is that?
• Valgrind can detect problems such as:

– Use of uninitialised memory
– Reading/writing memory after it has been free'd
– Reading/writing off the end of malloc'd blocks
– Reading/writing inappropriate areas on the

stack
– Memory leaks -- where pointers to malloc'd

blocks are lost forever
– Passing of uninitialised and/or unaddressible

memory to system calls
– Mismatched use of malloc/new/new [] vs

free/delete/delete []
– Some misuses of the POSIX pthreads API

Usage
• valgrind -?
• valgrind –v /usr/bin/cimserver

==29068== Thread 9:
==29068== Conditional jump or move depends on uninitialised
value(s)
==29068== at 0x402F4CEE:

Pegasus::ThreadPool::check_time(timeval*, timeval*)
(Thread.cpp:617)

==29068== by 0x402F4866:
Pegasus::ThreadPool::kill_dead_threads() (Thread.cpp:515)

==29068== by 0x402D2650:
Pegasus::MessageQueueService::kill_idle_threads(void*)
(MessageQueueService.cpp:70)

==29068== by 0x40549509: thread_wrapper (vg_libpthread.c:667)

Valgrind
• pthread.spinlock mechanism is not

supported by Valgrind (1.9.5)– and
Pegasus uses it.
– Konrad (konradr at us dot ibm dot com)

has have a patch for 1.9.3 to fix that.

Interoperability

Issues
• Data types adhere to Common

Language Specification
• CIM/HTTP issues between different

clients and servers.
– SNIA CIMbrowser works.

• In the Pegasus CVS tree

– WBEMcli works.

Interoperability testing
• Largely through SNIA and informal tests

today
• No Interoperability test suite exists
• SNIA has demonstrated

– Largely SNIA, Pegasus, WBEMServices are
interoperable at HTTP, XML level

• Minor exceptions for boundary conditions

– Some problems remain in operation definition
• E.g. what does include qualifiers mean?

