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Agenda
• Tests Suites

– Unit Tests
– XML tools (wbemexec, wbemcli, CLI)
– SBLIM Test Suite

• Logging and tracing
– How do I use it?
– Tracing? What is that?

• Debuggers / Memory checker
– DDD with GDB
– Visual C++ 6.0
– Valgrind

• Interoperability



Unit Tests
• Unit testing components individually

– Eg. Common Classes
– Test elements without CIMOM running

• Each of the C++ modules is individually tested 
through small test programs. 
– TestDataTime
– TestConfig
– TestString
– TestQualifier
– … etc ..
– Tests boundary conditions, illegal conditions, etc

• If you are adding something new, do make a 
unit test.



How to use it?
• TestMakefile or use the 

BuildMakefile (which does the 
checkout and runs TestMakefile)
– make –f TestMakefile <x>

• prestarttests (functional tests)
• poststarttests (no security, no SSL)
• tests (both above)
• standardtests



XML Tools (wbemexec)
• wbemexec (line test)

– wbmexec –d2 test.xml
– (examples of .xml files are in 

tests/wetest)



XML sample
<?xml version="1.0" ?>
<CIM CIMVERSION="2.0" DTDVERSION="2.0">
<MESSAGE ID="50000" PROTOCOLVERSION="1.0">
<SIMPLEREQ>
<IMETHODCALL NAME="EnumerateInstanceNames">
<LOCALNAMESPACEPATH>
<NAMESPACE NAME=“root"/>
<NAMESPACE NAME=“cimv2"/>

</LOCALNAMESPACEPATH>
<IPARAMVALUE NAME="ClassName">
<CLASSNAME NAME=“PG_OperatingSystem"/>

</IPARAMVALUE>
</IMETHODCALL>

</SIMPLEREQ>
</MESSAGE>

</CIM>



XML Tools (wbemcli)
• wbemcli

– wbemcli ein
http://localhost:5988/root/cimv2:cim_co
mputersystem

– Output:

localhost:5988/root/cimv2:PG_ComputerSystem.Cre
ationClassName=PG_ComputerSystem,Name=konr
ad.lotus.com



XML Tools (CLI)
• CLI (Command Line WBEM Client)

– CLI ei cim_computersystem
– Output:

//Instance of Class PG_ComputerSystem
instance of class PG_ComputerSystem
{
string Caption = Computer System;
string Description = Linux version 2.4.19-4GB 
(root@Pentium.suse.de)

(gcc version 3.2) #1 Fri Sep 13 13:14:56 UTC 2002;
string Status = OK;
string CreationClassName = PG_ComputerSystem;
string Name = konrad.lotus.com;
string NameFormat = IP;
… more …



SBLIM Test Suite Specification
• http://www-124.ibm.com/sblim/
• A test suite for any CIMOM
• Role matching engine
• Performs three major tests:

– Interface test
– Consistency test
– Specification test



Interface, Consistency tests
• Interface tests:

– Verify that all required provider interfaces are 
properly implemented, by executing each 
operation of the Instance and Association 
Interfaces and interpret the returned results.

• Consistency test:
– Class and property level.
– Number of proper instances.
– Observance of threshold values.
– Checking returned values against system 

values.



Specification test
• Specification test:

– The specification test makes use of the meta-
information about the model. Within this test 
type, it is possible to figure out, if the provider 
implements the class definition in the required 
manner. 



Example of interface test

*********************************
class : PG_ComputerSystem
objectPath : 
PG_ComputerSystem.CreationClassName=CIM_OperatingSystem \
,CSName=konrad.lotus.com

-----------------------------------------------------------
Instance                enumInstanceNames

-----------------------------------------------------------
Instance                delete
Expected Exception : NOT_SUPPORTED

-----------------------------------------------------------
Instance                create



Output (Report card)

********************************************************************************
class : PG_ComputerSystem
Fri Jul 18 08:39:36 2003

--------------------------------------------------------------------------------
Instance                                                       enumInstanceNames
Status : ok
RC     : 1
Number of Returned Instances : 1
user time       : 0              child user time   : 0          ut :       0
system time     : 0              child system time : 0.01       st :    0.01

….
PG_ComputerSystem

Number of Tests where Status ok     : 2
Number of Tests where Status failed : 1



Logging
• Oriented towards production.

– In your code:

#include <Pegasus/Common/Logger.h>
…

Logger::put(Logger::ERROR_LOG,
“My Backup Provider”, 
Logger::WARNING,
“Got error code $0 from tar,retrying…",
_tarStatus);



Tracing
• Tracing is done per component (not 

per file).
• Different levels per trace:

– 1 - Function Entry/Exit
– 2 - Basic flow trace messages, low 

data detail
– 3 - Inter-function logic flow, medium 

data detail
– 4 - High data detail



src/Pegasus/Common/TraceComponents.h

• List of components:
– Channel
– XmlWriter
– CimData
– ProvManager
– Authorization
– Authentication
– WQL
– Thread
– .. etc ..
– ALL



How do I use it?
• Change the trace component:

– bin/cimconfig –s 
traceComponents=Thread,ProvMana
ger

• Logs the data in cimserver.trc file
• Change the trace level:

– bin/cimconfig –s traceLevel=4

• See also mak/Buildmakefile for 
typical trace configurations.



Debuggers



DDD with GDB
– http://www.gnu.org/software/ddd/
– GNU DDD is a graphical front-end for 

command-line debuggers such as 
GDB, DBX, WDB, Ladebug, JDB, XDB, 
the Perl debugger, or the Python 
debugger. Besides ``usual'' front-end 
features such as viewing source texts, 
DDD has become famous through its 
interactive graphical data display, 
where data structures are displayed as 
graphs. 



How to debug your Provider?
• Compile Pegasus and your provider with 

PEGASUS_DEBUG=1 to enable –g flag 
for compilation

• Install DDD and GDB
• Run ddd
• File -> Open Program. Select cimserver
• ddd shows the cimserver.cpp source code 

in the main window
• Set a break at the first execution line in the 

main function in the cimserver.cpp
• Type “run” in the command window (a 

window under the source code).
• Type in the argument “daemon=false”



Set breakpoints
• When it stops, select File -> Open 

Source. 
• Select ProviderModule.cpp
• Set the breakpoint in (line 170)

– CIMProvider
*ProviderModule::load(const String & 
providerName)

– In the line that says _library = 
System::loadDynamicLibrary(const … )





More breakpoints.
• Type “continue” in the command window
• Use your favorite CIM Browser (or just use 

the XML Tools examples mentioned earlier) 
to access the CIM Provider you want to 
debug (PG_OperatingSystem, for 
example).

• In the DDD it will halt. Step “next” over the 
code that loads the library (_library = 
System::loadDynamicLibrary(..). )

• File-> Open Source. Select your source 
code (OperatingSystemProvider.cpp and 
OperatingSystemProviderMain.cpp). 

• Set a breakpoint in where you want.
• Type “continue” in the command window.



How do I see values?

(gdb) p (const char *)providerName.getCString()
$27 = 0x8171560 "PG_OperatingSystemProvider“

(gdb) p (const char *)_fileName.getCString()
warning: can't find class named 
`Pegasus::ProviderModule', as given by C++ RTTI
$28 = 0x8171580 
"/home/konrad/install/lib/libOSProvider.so"



Visual C++ 6.0 debugging.
• Edit pegasus source to work around 

a problem with a debugger
– Comment out a line 87 in 

%PEGASUS_HOME%\src\common\IP
C\Windows.h.

– The line 87 is like "#define 
PEGASUS_CONDITIONAL_NATIVE=1
"



Building Pegasus
• Install/Build Pegasus and debugger

– Set PEGASUS_ROOT environment 
variable to the same value as 
PEGASUS_HOME

– Set PEGUSUS_DEBUG=1 and build 
Pegasus.

– Install Visual Studio with debugger (if  
you don't install it yet.)



Setup Project in Microsoft Visual 
C++
• Open Microsoft visual C++ 6.0 from Start 

Menu
• File->Open cimserver.exe in the 

%PEGASUS_HOME%\bin director.
• Project->Setting...
• Select Debug tab
• Put "-l" in Program arguments
• Select Additional DLLs in Category
• Put OperatingSystemProvider.dll from a 

file list getting by selecting "..." button.
• Close Project Setting by clicking "OK".



Set breakpoints.
• File->Open 

OperatingSystemProviderMain.cpp in 
%PEGASUS_HOME%\src\Providers\sam
ple\InstanceProvider directory.

• Set breakpoints wherever you want in 
OperatingSystemProviderMain.cpp. (You 
can open any of your source code and set 
break points).

• Start debugging (F5).
• Select OK for the inform



Access the Pegasus from a browser

• Use your favorite CIM Browser (or 
just use the XML Tools examples 
mentioned earlier) to access the CIM 
Provider you want to debug 
(PG_OperatingSystem, for 
example).

• The break point will be hit at this 
point.



Valgrind – The Gate of Death
• http://developer.kde.org/~sewardj/
• Valgrind is a GPL'd tool to help you 

find memory-management problems 
in your programs. When a program 
is run under Valgrind's supervision, 
all reads and writes of memory are 
checked, and calls to 
malloc/new/free/delete are 
intercepted.



What is that?
• Valgrind can detect problems such as: 

– Use of uninitialised memory 
– Reading/writing memory after it has been free'd
– Reading/writing off the end of malloc'd blocks 
– Reading/writing inappropriate areas on the 

stack 
– Memory leaks -- where pointers to malloc'd

blocks are lost forever 
– Passing of uninitialised and/or unaddressible

memory to system calls 
– Mismatched use of malloc/new/new [] vs

free/delete/delete [] 
– Some misuses of the POSIX pthreads API 



Usage
• valgrind -?
• valgrind –v /usr/bin/cimserver

==29068== Thread 9:
==29068== Conditional jump or move depends on uninitialised
value(s)
==29068==    at 0x402F4CEE: 

Pegasus::ThreadPool::check_time(timeval*, timeval*) 
(Thread.cpp:617)

==29068==    by 0x402F4866: 
Pegasus::ThreadPool::kill_dead_threads() (Thread.cpp:515)

==29068==    by 0x402D2650: 
Pegasus::MessageQueueService::kill_idle_threads(void*) 
(MessageQueueService.cpp:70)

==29068==    by 0x40549509: thread_wrapper (vg_libpthread.c:667)



Valgrind
• pthread.spinlock mechanism is not 

supported by Valgrind (1.9.5)– and 
Pegasus uses it.
– Konrad (konradr at us dot ibm dot com) 

has have a patch for 1.9.3 to fix that. 



Interoperability



Issues
• Data types adhere to Common 

Language Specification
• CIM/HTTP issues between different 

clients and servers.
– SNIA CIMbrowser works.

• In the Pegasus CVS tree

– WBEMcli works.



Interoperability testing
• Largely through SNIA and informal tests 

today
• No Interoperability test suite exists
• SNIA has demonstrated

– Largely SNIA, Pegasus, WBEMServices are 
interoperable at HTTP, XML level

• Minor exceptions for boundary conditions

– Some problems remain in operation definition
• E.g. what does include qualifiers mean?


