

Pegasus Enhancement Proposal (PEP)

PEP #: 065

Title: benchmarkTest Utility

Version: 1.0

Created: 15 May 2003

Authors: Denise Eckstein, Hewlett-Packard

Status: Accepted

Version History:

Version Date Author Change Description
1.0 15 May 2003 Denise Eckstein Initial Submission

Abstract: This PEP proposes adding a simple benchmark Test utility to OpenPegsus.

Definition of the Problem
By supporting a common, industry standard interface for monitoring and accessing
management data, WBEM offers a significant number of benefits to instrumentation
developers, management application developers and system administrators.

However, with the introduction of any interface layer comes an additional cost. This
cost needs to be considered as part of a decision to use the WBEM interface to expose
and access management data. The benchmarkTest utility has been developed as a tool
to help developers characterize the performance impact of moving to WBEM.

In addition, this tool could help the OpenPegasus Community monitor performance
changes during the development lifecycle.

Proposed Solution
Note 1: The code segments and output shown in this PEP, although representative of the final
submission, are still subject to change.

Note 2: A base set of tests are proposed in this PEP. As part of this PEP, we are proposing
that the addition of new test cases and configurations to this utility be handled using the
Bugzilla process.

Solution Description

The WBEM benchmarkTest utility consists of five components:

o benchmarkTest: the benchmarkTest CIM Client application
o libbenchmarkProviderModule: the benchmarkTest CIM Provider
o libbenchmarkDefinition: a shared library containing common definitions

and functions
o benchmarkProvider.mof: the benchmarkTest class definitions
o benchmarkProviderR.mof: the benchmarkTest provider registration MOF

The benchmarkTest Client is a CIM Client that (1) issues a canned set of requests
against the benchmarkTest Provider, (2) monitors the Elapse Time between requests
and responses, and (3) generates a simple report describing the results.

The benchmarkTest Provider is a CIM Instance Provider that generates a response
of a requested size.

Class Definitions

The benchmarkTest Provider uses the class name to determine the amount of data to
return in the response. The benchmark Provider will “support” classes that use the
following format for class name:

BenchmarkClassPxxxxSyyyyIzzzz

The benchmarkTest Provider uses the values of xxxx, yyyy, and zzzz in the class name
string (i.e., BenchmarkClassPxxxxSyyyyIzzzz) to determine the number of non-key
Properties (xxxx), the Size (yyyy) of each non-key Property, and the number of
Instances (zzzz) to return in the response. E.g., calling enumerateInstances with the
class name benchmarkClassP0050S0100I0010 will return a response with 10
instances; each instance will have 50 properties and each property will return a string
with 100 characters.

The following figure shows class definitions for the benchmarkClassP0001S1000I0010,
benchmarkClassP0010S0010I0010 and benchmarkClassP0010S0100I0010. The class
definitions for the benchmark classes are defined in benchmarkProvider.mof.

class benchmarkClassP0001S1000I0010
{

[key] Uint32 Identifier;
string Property0001;

};

class benchmarkClassP0010S0010I0010
{

[key] Uint32 Identifier;
string Property0001;
string Property0002;
string Property0003;
string Property0004;
string Property0005;
string Property0006;
string Property0007;
string Property0008;
string Property0009;
string Property0010;

};

class benchmarkClassP0010S0100I0010
{

[key] Uint32 Identifier;
string Property0001;
string Property0002;
string Property0003;
string Property0004;
string Property0005;
string Property0006;
string Property0007;
string Property0008;
string Property0009;
string Property0010;

};

Note 1: The benchmarkTest Provider will never return more instances or properties
than allowed by an operation. E.g., calling getInstance with the class name
benchmarkClassP0050S0100I0010 will return a response with a single instance; this
instance will have 50 non-key properties of size 100.

Note 2: All benchmarkTest classes MUST contain a single key property named
Identifier.

[key] Uint32 Identifier;

Provider

The benchmarkTest Provider is a CIM Instance Provider that generates a response of a
requested size. As an example, the following figure contains the implementation of
enumerateInstances.

void benchmarkProvider::enumerateInstances(
const OperationContext & context,
const CIMObjectPath & classReference,
const Boolean includeQualifiers,
const Boolean includeClassOrigin,
const CIMPropertyList & propertyList,
InstanceResponseHandler & handler)

{
CIMInstance _instance;
Uint32 numberOfProperties;
Uint32 sizeOfPropertyValue;
Uint32 numberOfInstances;

CIMName className = classReference.getClassName();
test.getConfiguration(className, numberOfProperties,

sizeOfPropertyValue, numberOfInstances);

// begin processing the request
handler.processing();

for (Uint32 i = 1; i <= numberOfInstances; i++)
{

_instance = _buildInstance(className,
numberOfProperties,
sizeOfPropertyValue , CIMValue(i));

handler.deliver(_instance);
}

// complete processing the request
handler.complete();

}

Client

The benchmarkTest Client is a CIM Client that (1) issues a canned set of requests
against the benchmarkTest Provider, (2) monitors the Elapse Time between requests
and the responses, and (3) generates a simple report describing the results.

benchmarkTest [-h hostname] [-p portnumber] [-t timeout] [-u username] [-w
password] [-s] [-i iterations]

Test Definition

The benchmarkTest Client implements 5 different tests. With the exception of test 2,
each test is designed to run a specified number of iterations. The default number of
iterations is 10. This value can be changed using the [-i iterations] parameter on the
benchmarkTest command line.

• Test 1 – Connect/Disconnect:

This test simply connects to the CIM Server and then immediately disconnects.

The following figure shows the output generated for Test 1. This output shows that the
test was run 10 times with a Total Elapse Time of 0.004 seconds. The Average Elapse
Time is computed by dividing the Total Elapse Time by the number of iterations (e.g.,
10).

1: Benchmark Test #1: Connect/Disconnect Test
10 requests processed in 0.004 Seconds (Average Elapse Time =
0.0004)

• Test 2 – Provider Load:

This test times the “first invocation” of the provider. It includes the overhead
associated with the load and initialization of the provider library.

The benchmarkTest client uses a getInstance request on the class
benchmarkClassP0001S0010I0001 for this operation. The following output shows the
time required to perform this operation was 0.032 seconds.

2: Benchmark Test #2: Load Provider Test on class
benchmarkClassP0001S0010I0001
Connect time = 0
Unload Module time = 1.773
First getInstance request processed in 0.032 Seconds

Note 1: The output of this test also includes the time (i.e., Unload Module Time)
required to “disable” and “enable” the Provider. The Unload Module Time will vary
depending on whether or not the Provider was already loaded.

Note 2: If the Elapse Time between the request and the response is small (i.e., <
.001 second), a “Connect time” of “0” will be displayed.

• Test 3 – getInstance:

This test calls getInstance on a specified class.

The following figure shows the Test 3 code segment used to invoke getInstance.

stopwatchTime.reset();

CIMObjectPath reference =
benchmarkTestCommand::_buildObjectPath(className,

CIMValue(99));

for (Uint32 i = 0; i < _iterations; i++)
{

CIMInstance cimInstance = client.getInstance(NAMESPACE,
reference);

CIMObjectPath instanceRef = cimInstance.getPath();
if (!(instanceRef.getClassName().equal(className)))
{

outPrintWriter << "Returned ClassName = "
<<

instanceRef.getClassName().getString() << endl;
outPrintWriter << "Expected ClassName = "

<< className.getString() << endl;
errorExit(errPrintWriter, "getInstance failed");

}
}

double elapsedTime = stopwatchTime.getElapsed();

The following figure shows the output generated for Test 3. This output shows that the
test was run 10 times on class benchmarkClassP0001S0010I0001 with a Total Elapse
Time of 0.147 seconds.

3: Benchmark Test #3: getInstance Test on
benchmarkClassP0001S0010I0001
Connect time = 0
Number of Non-Key Properties Returned = 1
Size of Each Non-Key Property Returned = 10
Number of Instances Returned = 1
10 requests processed in 0.147 Seconds (Average Elapse Time =
0.0147)

• Test 4 – enumerateInstanceNames:

This test calls enumerateInstanceNames on a specified class.

The following figure shows the output generated for Test 4. This output shows that the
test was run 10 times on class benchmarkClassP0001S0010I0001 with a Total Elapse
Time of 0.153 seconds.

4: Benchmark Test #4: enumerateInstanceNames Test on class
benchmarkClassP0001S0010I0001
Connect time = 0
Number of Non-Key Properties Returned = 0
Number of Instances Returned = 1
10 requests processed in 0.153 Seconds (Average Elapse Time =
0.0153)

Note 1: The enumerateInstanceNames operation returns ‘0’ non-key properties.

• Test 5 – enumerateInstances:

This test calls enumerateInstances on a specified class.

The following figure shows the output generated for Test 5. This output shows that the
test was run 10 times on class benchmarkClassP0001S0010I0001 with a Total Elapse
Time of 0.153 seconds.

5: Benchmark Test #5: enumerateInstances Test on class
benchmarkClassP0001S0010I0001
Connect time = 0
Number of Non-Key Properties Returned = 1
Size of Each Non-Key Property Returned = 10
Number of Instances Returned = 1
10 requests processed in 0.153 Seconds (Average Elapse Time =
0.0153)

Class Definitions

In the benchmarkTest, tests 3, 4 and 5 are repeated for the following classes. A total
of 83 tests are run during a single invocation of benchmarkTest.

Note: This PEP proposes that the addition of new test cases and configurations to this
utility be handled using the Bugzilla process.

Class Name P S I

benchmarkClassP0001S0010I0001 1 10 1

benchmarkClassP0001S0100I0001 1 100 1

benchmarkClassP0001S1000I0001 1 1000 1

benchmarkClassP0010S0010I0001 10 10 1

benchmarkClassP0010S0100I0001 10 100 1

benchmarkClassP0010S1000I0001 10 1000 1

benchmarkClassP0050S0010I0001 50 10 1

benchmarkClassP0050S0100I0001 50 100 1

benchmarkClassP0050S1000I0001 50 1000 1

benchmarkClassP0001S0010I0010 1 10 10

benchmarkClassP0001S0100I0010 1 100 10

benchmarkClassP0001S1000I0010 1 1000 10

benchmarkClassP0010S0010I0010 10 10 10

benchmarkClassP0010S0100I0010 10 100 10

benchmarkClassP0010S1000I0010 10 1000 10

benchmarkClassP0050S0010I0010 50 10 10

benchmarkClassP0050S0100I0010 50 100 10

benchmarkClassP0050S1000I0010 50 1000 10

benchmarkClassP0001S0010I0100 1 10 100

benchmarkClassP0001S0100I0100 1 100 10

benchmarkClassP0001S1000I0100 1 1000 100

benchmarkClassP0010S0010I0100 10 10 100

benchmarkClassP0010S0100I0100 10 100 100

benchmarkClassP0010S1000I0100 10 1000 100

benchmarkClassP0050S0010I0100 50 10 100

benchmarkClassP0050S0100I0100 50 100 100

benchmarkClassP0050S1000I0100 50 1000 100

Connection Types

HP WBEM Services supports multiple CIM-XML connection types between a CIM Client
and the CIM Server.

The following table describes the supported communication protocols between a
remote CIM Client and CIM Server.

From
Component

To
Component Encoding Communication

Protocol Port Comments

CIM Client
CIM

Server CIM-XML HTTP 5988

CIM Client
CIM

Server CIM-XML HTTPS 5989

Local connection types are defined in the following table.

From
Component

To
Component Encoding Communication

Protocol Port Comments

CIM Client CIM
Server

CIM-XML connectLocal

Protocol
will vary
depending
on
platform.

CIM Client
CIM

Server CIM-XML HTTP 5988

CIM Client
CIM

Server CIM-XML HTTPS 5989

The benchmarkTest utility supports command line parameters that allow the
connection type to be specified.

Synopsis
benchmarkTest [-h hostname] [-p portnumber] [-t timeout] [-u username] [-w

password] [-s] [-i iterations]

Description

By default, the benchmark tests are executed on the local host, using a connectLocal.
By default, benchmarkTest waits 20000 milliseconds (20 seconds) on sending a
request, then times out if a response hasn't been received. The -h option allows the
user to specify a remote host. The -p option allows the user to specify a different port
number. The -t option allows the user to specify, in milliseconds, a different timeout
value for the request. The -u and -w options allow the user to specify a username and
password to use for authentication of the user. The -s option enables the SSL protocol
between benchmarkTest and the CIM Server.

Options

benchmarkTest recognizes the following options:

-h hostname

Use the specified host. A CIM Server must be running on the specified host. If
this option is not specified, benchmarkTest will connect to the local host and
authenticate itself.

-p portnumber
Use the specified port number. The port number must be the port number on
which the CIM Server is running on the specified host. If port 5989 is
specified, the SSL protocol is used.

-t timeout
Wait the specified number of milliseconds on sending a request, before timing
out if no response has been received. The timeout value must be an integer
value greater than 0.

-u username
Authorize the operation using the specified username. If username is not
specified, the current logged in user will be used for authentication.

-w password
Authorize the operation using the specified password. If the password is not
specified and the remote host requests authentication, the user will be
prompted for a password.

-s
Enable the use of the SSL protocol between benchmarkTest and the CIM

server. If –s is specified and a port is not, port 5989 will be assumed.
-i iterations

Run each test the specified number of iterations. The default value for
iterations is 10.

Return Value

When an error occurs, an explanatory error message is written to stderr and
an appropriate value is returned.

The following return values are returned:

0 Success

1 Error

Schedule

Action Planned Actual Comment

PEP Submitted 15 May 2003 15 May 2003

PEP Reviewed 23 May 2003

PEP Approved 31 May 2003 06 June 2003
Ballot 14

Code Committed 30 June 2003

Copyright (c) 2003 BMC Software; Hewlett-Packard Development Company, L.P.;
IBM Corp.; The Open Group

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to the following conditions:

THE ABOVE COPYRIGHT NOTICE AND THIS PERMISSION NOTICE SHALL BE INCLUDED IN ALL COPIES OR
SUBSTANTIAL PORTIONS OF THE SOFTWARE. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.

