PEP 348

1 of 39

file:///C:/Pegasus112/SCMO/PEP-348-SCMO_CMPI.html

Pegasus Enhancement Proposal (PEP)
PEP#: 348
PEP Type: Functional
Title: The CMPI infrastructure using SCMO.
Status: Approved

Version History:

Version Date Author Change Description
0.1 07 July 2009 Thilo Boehm |[Initial draft
0.2 10 July 2009 Thilo Boehm |After Review Arch Call 07/09/09
0.3 30 July 2009 Thilo Boehm |Work in several comments.
0.4 26 August 2009 Marek Add XmIWriter design
Szermutzky
0.5 |15. October 2009 | Thilo Boehm |Add SCMOClass Cache.
0.6 05. November Marek Add Data Transport and Transformation
2009 Szermutzky
1.0 19. November Thilo Boehm |Updates for ballot
2009
1.1 |12. January 2010 | Thilo Boehm |Updates from ballot:
- Rework pictures (remove figure of round robin class cache)
- Add findings.
Updates from implementation:
- SCMOClassCache: The OOP Agent communication with the CIM server
is using pipes.

Abstract:

In PEP341 the concept of SCMO (Single Chunk Memory Objects) was introduced. This PEP defines the implementation
the usage of SCMO within the CMPI provider manager and processing of SCMO instances in the CIM Server.

Definition of the Problem

One of the performance gluttons of the CMPI Provider Manager and CMPI providers is the object oriented structure of
the internal data representation and the semantic of the internal interface.

The semantic of the internal interface is a pure C++ programming language style and cannot be changed. The reason
is that it is closely interwoven with the external interface, defined by PEP#344, and can not easily be split such that
the external interface is not broken. CMPI is a C language style interface with a limited functionality on instances.
One difference for instances the semantic logic used to set a property value on an instance object.

To further optimize the CMPI performance of the CIM Server, the CMPI implementation has to use a different
implementation of instances

Proposed Solution

For CMPI only the usage of CIMClasses and CIMInstances will be replaced by SCMO objects. At the CMPI Provider
Manager the CMPI interface implementation will be working with SCMO objects.

The handling thought the server and the end points (like the XMLWriter) has to be enabled to handle SCMO objects.
This will be an alternate way in addition to the existing implementation. For example: The CIMInstanceResponseData
class will be utilized to transport the SCMO objects through the server.

New end points (like the XMLWriter) have to be designed and to be implemented to avoid conversion of SCMO objects.

To be able to convert CIM objects into SCMO objects a new CIM Server wide class cache is needed for SCMO classes.
The reason for not enabling the existing repository class cache to handle SCMO Classes is, that SCMO Classes also
needed to be available in the provider agent and the repository is only available with in the main CIM server process.

Within the CMPI Provider Manager the existing CMPI Class Cache is changed to cascade over the new SCMO classes
cache.

The current CMPI class cache handling/algorithm will not be changed. In the current implementation a class is
retrieved only once from the repository into the CMPI Class cache when the provider has a demand for that class. e.g
to create an instance. There is no logic in place to check for an update of a class in the repository. So there will be no

13.01.2010 12:23

PEP 348

2 of 39

file:///C:/Pegasus112/SCMO/PEP-348-SCMO_CMPI.html

update in the CMPI Class cache if a class is changed in the Repository. The lifecycle of the cache is bound to the CMPI

Broker for one provider. That means the cache is destroyed only when the provider is unloaded.

CMPI using SCMO

transfer/copy reference
_—

The SCMO Class Cache

Hard requirements for the class cache:

The class definitions must be available in the CIM server and OOP agent.
The size must be limited

The implementation must be thread save with minimal serialization
Design is optimized for the CMPI/SCMO scenario.

Hold the currently used classes in cache.

The look up of the classes must be fast.

Class name and name space name are keys.

NooprpwNhPE

Soft requirements for the class cache:

The cache size is defined by the number of classes to be stored in the cache
The number should match that of the repository class cache.

The number is defined at compile time.

Must be suppressible to save memory for e.g. embedded systems.

Keep memory usage low.

Avoid duplicate caching.

Class modifications are picked up by the cache for consistency

NoopwhpE

Design

The cache is organized as an indexed array used in round robin.

The SCMO Class cache is implemented as a singleton. The class cache is instantiated at global scope in the CIM server
and OOPAgent and initialized with a callback function for retrieving CIM Classes from the repository. The retrieved

classes are converted to SCMOClasses and stored in the cache.

13.01.2010 12:23

PEP 348

3 of 39

file:///C:/Pegasus112/SCMO/PEP-348-SCMO_CMPI.html

typedef Cl MCl ass (*SCMOC| assCacheCal | backPtr) (
const Cl MNanmespaceNane& naneSpace,
const Cl MNanme& cl assNane) ;

In the CIM server the callback function is directly using the repository.
Retrieving SCMOClasse in the OOP agent.

To be able to retrieve SCMOClasses in the OOP agent the already established pipe connection is used. The ratrional to
use the pipe connection is, during the CIM server start up indication subscriptions are setup and for CMPI providers
SCMOClasses are needed but the communication with the CIMOMHandle, using the CIMClient, is disabled.

There for two new messages are introduced:

1. ProvAgtGetScmoClassRequestMessage (CIMNamespaceName nameSpace_, CIMName className)
2. ProvAgtGetScmoClassResponseMessage (SCMOClass scmocClass)

The following describes the logical flow between OOP agent and CIM server to retrieve a SCMOCIlass:

1. The OOP agent call back function ProviderAgent::_scmoClassCache_GetClass() sends a
ProvAgtGetScmoClassRequestMessage() to the CIM server over the pipe and wait for the posting of the
_scmoClassDelivered semaphore. If the semaphore is not posted until
PEGASUS_DEFAULT_CLIENT_TIMEOUT_MILLISECONDS are reached, the call back is not successful and an
empty SCMOClass is returned.

2. The CIM server reads the ProvAgtGetScmoClassRequestMessage() in
ProviderAgentContainer::_processResponses(), requests the SCMOClass from the CIM server SCMOClassCache,
and sends the ProvAgtGetScmoClassResponseMessage() to the OOP agent using the existing pipe.

3. The OOP agent receives the ProvAgtGetScmoClassResponseMessage() in
ProviderAgent::_readAndProcessRequest(), saves the SCMOClass in _transferSCMOClass and posts the
scmoClassDelivered semaphore.

4. The _scmoClassCache_getClass() function reads the SCMClass from _transferSCMOCIlass and delivers it to the
caller.

Expiration rules

The if the cache is full, the oldest element is released. If the cache is not full all cache entries are remaining in the
cache.

If a CIMClass has been removed form the repository, it will also be removed from the cache.

If a CIMClass has been modified in the repository, the whole cache will be cleared.

SCMBClassCacheEntry

struct SCMBCl assCacheEntry
{
/'l Spin-lock to serialize the access to the entry
At om cl nt | ock;
/'l The key to identify the entry
Ui nt 64 key;
/] Pointer to the cached SCMOCl ass
SCMOCl ass* dat a;

b

The lock

This lock indicates that a thread is using the entry read-only. This lock is used to protect read operations from write
operations when an entry needs to be updated.

A cache entry lock is implemented via a spin-lock over an atomic int. The lock is obtained when the atomic lock

counter increment results in a lock count of 1. Otherwise the lock count is decremented and incremented again until
we end up at 1.

13.01.2010 12:23

PEP 348 file:///C:/Pegasus112/SCMO/PEP-348-SCMO_CMPI.html

The reason to use a spin-lock is the assumption that the lock is held only while executing very few instructions before
the lock is released again. To search for an entry only the key is compared and if equal, the class name and name
space have to be compared.

The key

An entry is identified by the key. A key consists of:

the length of the class name,

the last and the first character of the UTF8 representation of the class name,

the length of the name space name,

and the first and the last character of the UTF8 representation of the name space name.

These values are accumulated to a single Uint64:

Ui nt 64 key = (Ui nt64(classNaneLen) << 48) |
(Ui nt64(cl assName[0]) << 40) |
(Ui nt 64(cl assName[cl assNaneLen-1]) << 32) |
(Ui nt 64(nameSpaceNaneLen) << 16) |
(Ui nt 64(nameSpaceNane[0]) << 8)
Ui nt 64(naneSpaceName[nanmeSpaceNanelLen-1]);

The data

The data contains a pointer to a SCMOClass. SCMOClasses are reference counted. So as long as a SCMOClass is
referenced by the cache it will not be removed from memory. If a SCMOClass is removed from the cache, only the
reference count is decreased. As long as a SCMOlnstance or the CMPIClassCache are referencing a class it resides in
memory until the last reference is destroyed.

SCMOCIlassCache class

The SCMO Class Cache is an array of SCMBClassCacheEntries with size:
#def i ne PEGASUS SCMO CLASS CACHE SI ZE 32

One SCMOClass is about 30 KByte in size. With a size of 32 the cache requires about 1MByte of memory.

For suppressing the cache PEGASUS_CLASS CACHE_SIZE is set to 0. The caching itself is then disabled and compiled
out but the functionality to retrieve a SCMOClIass is still available. The request for a SCMOClass is then simply passed
through with out caching.

To accelerate consecutive retrievals of the same class from the class cache, the cache remembers the position of the
last successfull retrieval and always starts searching at that position. This optimization is based on the assumption that
processing CIM requests which yield multiple instances will cause 'number-of-instances' consecutive look-up's for the
same class in the cache.

cl ass PEGASUS COMMON LI NKAGE SCMOCI assCache

{
/*-k
* This function returns the SCMOCl ass for the given class nane and
* npame space.
* @ar am ndName The UTF8 encoded nanme space. '\0' term nated
* @aram nsNanmeLan The strlen of ndName (without '"\0")
* @ar am cl assNane The UTF8 encoded cl ass nanme. '\0' term nated
* @aram nsNanmeLan The strlen of className (without '"\0")
* @eturn The SCMOCl ass. If the class was not found, an enpty
* SCMOCl ass is returned. This can be checked by using the
* SCMOCI ass. i sEnpty() nethod.
**/

SCMOCl ass get SCMOCI ass(
const char* nsNane,
Ui nt 32 nsNanelLen,
const char* cl assNane,
Ui nt 32 cl assNaneLen);

/**

4 of 39 13.01.2010 12:23

PEP 348

5 of 39

file:///C:/Pegasus112/SCMO/PEP-348-SCMO_CMPI.html

* Renmpves the named SCMOCl ass fromthe cache.
* @aram ci mMNanmeSpace The nanme space nanme of the SCMOC ass to

renove.

* @aram ci nCl assNane The cl ass nane of the SCMOCl ass to renove.

**/

voi d remveSCMOCl ass(Cl MNanespaceNane ci mNaneSpace, Cl MNane

ci mCl assName) ;

/**

* Clears the whol e cache.

* This should be only done at nodification of a class.

* This may invalidate subclass definitions in the cache.

* Since class nodification is relatively rare, we just flush the

entire

* cache rather than specifically evicting subclass definitions.

**/

void clear();

/**
* Returns the pointer to an instance of SCMOC assCache.
*/
stati c SCMOCl assCache* getlnstance();
/**
* Set the call back function for the SCMOCl ass to retrieve
Cl MOl asses.
* @aramclb The static call back function.
*/
voi d set Cal | Back(SCMOCl assCacheCal | backPtr cl b)
{
_resol veCal | Back = cl b;
}

static void destroy();

private:

[/ Singleton instance pointer
static SCMOCl assCache* _thel nstance;

/1 The call back function pointer to get ClMJass's
SCMXCl assCacheCal | backPtr _resol veCal | Back

/1 The cache array
SCMBCI assCacheEntry _theCache[PEGASUS _SCMO CLASS CACHE_SI ZE]

/1l Lock to prevent parallel nodifications of the cache.
ReadW it eSem _nodi f yCachelLock;

/] Last successful read index.
Ui nt 32 | ast Successl ndex;

/] Last successful witten cache index.
Unt32 lastWittenl ndex;

/1 Counter of used cache entries.
Unt32 fillingLevel;

/! Indicator for destruction of the cache.
Bool ean _dyi ng;

13.01.2010 12:23

PEP 348 file:///C:/Pegasus112/SCMO/PEP-348-SCMO_CMPI.html

Class cache Use cases

The following use case are written in pseudo code. These cases only describe the straight forward algorithm.

How to find a SCMOCIlass

calculate search key from input;
start index = _lastSuccessindex % PEGASUS_SCMO_CLASS CACHE_SIZE ;
next index = start index;

for all cache entries:

{
obtain the lock for the next index entry in the cache;
? is Key of entry equal to search key ?
Yes --> ? is class hame and name space of entry equal with input ?
Yes -->
_lastSuccessindex = next index;
save SCMOClass pointer;
unlock of the entry;
return SCMOCIlass pointer;
unlock of the entry;
get next entry index;
¥

How to add a SCMOCIlass

obtain _modifyCachelock;

To determine whether the class was already added while waiting for the _modifyCachelLock, search the cache
again.

Note:

In this scenario is it not required to obtain further locks,

because no modification can occur while we hold the _modifyCachelock;
Other threads can continue to search and find entries in the cache.

for all cache entries:

{
? is Key of entry equal to search key ?
Yes --> ? is class name and name space of entry equal with input ?
Yes -->
_lastSuccesslindex = next index;
unlock _modifyCacheLock;
return SCMOClass pointer;
get next entry index;
}

Use call back function to get the CIM class;

? Not Found ?
unlock _modifyCachelLock;

return NULL;
Transform CIM class into SCMOClass;

The index for the entry to be written is the next index to _lastWritten (_lastWritten + 1 %
PEGASUS_SCMO_CLASS_CAHE_SIZE)

get entry lock;

6 of 39 13.01.2010 12:23

PEP 348

7 of 39

file:///C:/Pegasus112/SCMO/PEP-348-SCMO_CMPI.html

update entry with key and SCMOClass;
release entry lock;

update _lastSuccessindex = next index;
Update _lastWritten = next index;

release _modifyChachelock;

The SCMO Data model

The focus of this PEP is on implementing a fast delivery instances from CMPI providers.

To be interoperable within OpenPegasus (e.g. C++ provider up-calls) converting functions will be provided to
convert SCMO to C++ objects and vice versa.

The current C++ object model is not impacted by this implementation.

Basics

Data objects in SCMO are residing in a single chunk memory block. The SCMOCIass contains all static data, data which
does not vary between instances, (like qualifier, class origin etc.) and the SCMOInstance the dynamic data (like
property values).

The size of a SCMOlInstance is small due to the constant data is stored only once in a SCMOClass. Many instances are
connected to the same class.

The design for SCMO is optimized to set data once, and not for data modification/removal.
The single chunk memory block of a SCMO object consists of a header section and a dynamic section.

To distinguish between the SCMO class object and the layout of the single chunk memory block, the suffix of the
structures names is SCMB.

Structures used to build the main header sections use the suffix _Header (e.g. SCMBObjectPath_Header). The
nature of these header structures is, that the size is known at compile time.

All other structures are components to manage the dynamic section of the SCMO object.

SCMOClass and SCMOlnstance are reference counted to make them easier usable. This also prevents for
unnecessary copies of the object, memory leaks, and addressing failures due to already released memory.

Addressing

The data in SCMOClass and SCMOlnstance is stored in a single chunk memory block.

A data object within the single chunk memory block is described by a Uint64 byte start index relative to the pointer to
the single chunk memory block and it's content length.

All addressing is done relative to the start of the single chunk memory block. This implies that for all valid references
the start index is greater than 0. A SCMBDataPtr NULL pointer is defined by start index set to O.

The rationale for this addressing is

® casy reallocation. If the allocated single chunk memory block is not large enough to hold all data, more
memory has to be reallocated. The reallocated memory might not be at the same address as it was before but
a relative pointer remains valid.

® casy transferable. If the single chunk memory block is transferred between processes, a relative pointer
remains valid.

® Relative pointers are using Uint64 values to be prepared for 64Bit environments.

This the definition of a relative pointer for objects stored in the single chunk memory. The memory is handled as
array of chars.

struct SCMBDat aPtr
{

/! start index of the data area

Ui nt 64 start;
/! size of data area
Ui nt 64 si ze;

13.01.2010 12:23

PEP 348 file:///C:/Pegasus112/SCMO/PEP-348-SCMO_CMPI.html

Memory management

To be able to use common SCMO functionality for managing a single chunk memory block, a SCMO common control
structure is needed.

This structure must be located at the beginning of the main header of the SCMO objects to be addressable without
knowing the type of the SCMO object.

struct SCvMBMgmt Header

{
/1 The magi c nunber for a SCMB nenory obj ect
Ui nt 32 magi c;
/1 Total size of the SCMB nmenory bl ock(# bytes)
Ui nt 64 total Si ze;
/1 The # of bytes available in the dynam c area of SCMB nenory
bl ock.
Ui nt 64 freeBytes;
/1l Index to the start of the free space in this SCMB nenory bl ock.
Ui nt 64 start O Fr eeSpace;
/1 Number of external references in this instance.
Ui nt 32 nunber Ext Ref ;
/1l Size of external reference index array;
U nt 32 si zeExt Ref | ndexArray;
/'l Relative pointer to the external reference Array.
SCMBDat aPt r ext Ref | ndexArray;
1

External references are objects allocated outside of the single memory block.

For a SCMOlnstance these are objects like embedded instances, objects. references, all implemented using
SCMOlnstances.

To be able to access the external references of a SCMOInstances, an array of relative start pointers is managed.
If an external references is added/set, the relative start pointer of this external reference is added to the array.
If the SCMOlInstance is deleted, cloned,or binary transferred the relative index is used to straight address the
external references and managed them.

The array is only allocated, if the a SCMOIlnstance contains external references.

#def i ne PEGASUS_SI ZE_REFERENCE_| NDEX_ARRAY 8

If the number of references of the SCMOInstance exceeds this number, the array is growing by
PEGASUS_SI ZE_ REFERENCE_| NDEX_ARRAY.

The reference to the related SCMOClass has to be managed manually.

Data mapping

In SCMB structures the primitive types of <Pegasus/Common/Config.h> are used.

Open Pegasus Strings are stored in character strings (char*) with UTF-8 encoding.
Memory Layout

To visualize the general memory layout, an instance with three properties is printed here. Two of of the properties are
key properties.

This picture is a general view of a SCMB instance memory layout. Some structure members are not itemized to keep
the picture simple.

The whole structures are described in more detail later in this PEP.

The whole block is a single chunk memory block. The arrows are relative pointers within the block. With one
exception: theClass is a external pointer to the related SCMOClass memory block.

8 of 39 13.01.2010 12:23

PEP 348

file:///C:/Pegasus112/SCMO/PEP-348-SCMO_CMPI.html

SCMOInstance
Memory Lavout

GCHOEeyBindingiet Header

theClass

startlfFreelpace
hashTahle
— keyBindingNodedrray

GCMO0Instance Main

propervirray
propertyFilter
propertyFiler IndexMap

SCMOEeyBindingiode

|"T T

Tiame __h‘j

1
Faue SCMOKeyBindingNodedrr ay

name

wvalue

*Thilo”

iz

“Robert” SCMOValue

Y Y ¥ vy

“Boeb lingen®

CIMTYPE_UINT3E
(Uint32) 42
CIMTYPE_3STRING

stringvalue SCHOInstancePropervhrray

CIMTYPE_UINT3E

valuedrrayiize=2
arrayValue
“Boeb lingen®

k4

(Uint3z) L&
(Uint3z) 45

b A

x”‘ﬁxxhh_ﬁ#/”“‘xhﬁh_ﬁf

Error handling

SCMO mainly uses return values to report the result of a method.
Only at disaster conditions like out of memory an exception is throw.

/! The enum of return values for SCMO functions.
enum SCMO _RC

{

9 of 39

SCMO K = 0,
SCMO_NULL_ VAL UE,
SCMO_NOT_FOUND,

SCMO_| NDEX_OUT_OF_BOUND,
SCMO_NOT_SAME_ORI Gl N,
SCMO_| NVALI D_PARAMETER,
SCMO_TYPE_M SSMATCH,

13.01.2010 12:23

PEP 348 file:///C:/Pegasus112/SCMO/PEP-348-SCMO_CMPI.html

SCMO W\RONG TYPE,

SCMO_NOT_AN_ARRAY,

SCMO | S AN ARRAY
i

SCMO Ordered Set

To manage properties and key properties the algorithm of Pegasus/Common/OrderedSet.h has been adapted to
SCMO.

The reason for using an ordered set is that properties have to be accessible by index and by name.

The hash code algorithm is the same as for Pegasus/Common/OrderedSet.h .

In contrast to the Pegasus/Common/OrderedSet.h implementation, a node in the array is addressed by an index
instead by a pointer.

The hashTabl e[] is used for name based lookups based on the name tags.
The index of the hashTabl e[] is calculated doing a remainder operator with the name tag and hash size (NameTag %
64)

The hashTabl e[] contains the index+1 of the node in the nodeArray[] . The reason for shifting one up is to define O
as an invalid index entry in the hashTabl e[]

The nodeArray[] consists of nodes containing the property or a relative pointer to the property and link to the next
node containing a property with the same hash.

To decide, if the property was found, the names in the linked node chain have to be compared with the search
property name.

If the access to the properties are done directly by index, the look up is only done in the nodeArray|[].
Example:

The picture below shows an example of an SCMO ordered set. There are six property names with a hash calculated on
the first and last letter of the property name.

To find the property with the name aca, the hash has to be calculate. In this case the hash is 1. In the hashTabl e[]

at index 1 the value 1 is found. 1-1= 0 is the index of the property node in the nodeArray[]. The member Next at the
node indicates that there is a next property with the same hash, so the names have to be compared. But the property
node belongs to the property with the name aa. So the Next node (2) has to be looked at. At index 2 of the
nodeArray[] the property node for the property name aca is found.

10 of 39 13.01.2010 12:23

PEP 348 file:///C:/Pegasus112/SCMO/PEP-348-SCMO_CMPI.html

hashTable[]

012 3 4....
...N(64)

nodeArray|]

Property names
aa (hash = 1)

ab (hash = 2)
acafhash = 1) 3
acb (hash = 2)

abec (hash = 3)
abd(hash = 4)

CMPIObjectPath implementation using SCMO

CMPI implements CMPIObjectPath using the SCMOInstance as the data container.

In CMPI an object path can be created providing a class name and name space.

At creation of an object path the CMPI layer retrieves/creates the corresponding SCMOClass and creates a
SCMOlnstance from it.

If the SCMOClass is not found, the SCMOInstance is for the object path still created but marked as compromised to
indicate that it was created for a stale class.

The rationale to allow for the creation of compromised SCMOIlnstances is, that the CMPI interface allows to create an
object path for unknow classes (=classes which do not exist in the schema in the repository).

The SCMOlnstance is linked with the SCMOClass. If a key property is set/added on the CMPI object path object, the
key property is checked with the SCMOClass and if it is part of this class it is added to the SCMOInstance key property
array. Otherwise the key property is added to a chain of user defined key properties.

When a compromised CMPIObjectPath is used to create a CMPlInstance, the class referenced in the object path must
exist in the repository. So this will generally fail unless the classname and/or namespace have been updated after
creation of the CMPIObjectPath to match an existing class in the repository.

While it is possible to add key properties to a CMPIObjectPath, which are not defined in the respective CIM class to
satisfy the CMPI specification, these stale key properties will be stripped of when creating a CMPIInstance from this
CMPIObjectPath.

In the previous implementation (2.9 and before), any key binding could be added but invalid key bindings were later

removed by the normalizer or when returning an instance.
With this design the semantic is not changed, only the removal of invalid keys occurs earlier in the processing.

SCMBClass

The SCMBClass contains all static data which is valid across instances. A SCMBClass can be created from a CIMClass.
This assumes that the CIMClass contains all Properties, Qualifiers and KeyBindings of the requested class, including
propagated items.

11 of 39 13.01.2010 12:23

PEP 348

12 of 39

file:///C:/Pegasus112/SCMO/PEP-348-SCMO_CMPI.html

struct SCMBC ass_Main
{
/1 The SCMVMB nanagenent header
SCMBMgmt _Header header ;
/1l The reference counter for this class
At omi cl nt r ef Count ;
/1 Cbject flags
struct{
unsi gned i sEmpty :1;
}f1ags;

/1 Super C assNane

SCMvBDat aPt r super C assNane;

/1l Relative pointer to classhane

SChvBDat aPt r cl assNane;

/1l Relative pointer to nanespace

SCVBDat aPt r nameSpace;

/1 The key properties of this class are identified

/1 by a SCvBKeyPropertyMask

SCwvBDat aPt r keyPr opert yMask;

/1 Alist of index to the key properties in the property set node
array.

SCMVBDat aPt r keyl ndexLi st ;

/'l Keybi nding orderd set

SCMVBKeyBi ndi ngSet _Header keyBi ndi ngSet ;

/'l A set containing the class properties.

SCMBCI assPropertySet Header propertySet;

/1l Relative pointer to SCMBQualifierArray

Ui nt 32 number Of Qual i fiers;

SCMBDat aPt r qualifierArray;

b

The SCMBClass flag f | ags. i SEnpt y indicates if a SCMBClass consists only of a class and/or name space name.
This can be the case if a interim SCMOCIlass has to be constructed.
If such class is used to create a SCMOlnstance, the instance is flagged as compromised.

The indexes of key properties are stored in an array of Uint32 at the key| ndexLi st .
The size of the array is the number of properties in the class.

Also the bit mask key Pr opert yI\/EISk of the key properties is build at reading the CIMClass to have a fast look-up
if a property is a key property.

The mask is organized as Uint64 array.

The array size of the key property mask is (numberOfProperties / 64).

The index of a key property in the property set is equal to the index with in the key property mask.

If a bit is set (1) then it is a key property.
If a bit is not set (0) then it is not a key property.

t ypedef Ui nt64 SCVBKeyPr oper t yMask[] ;

keyl ndexLi st and keyPr opert yMask are uses to construct the property filter of the SCMBInstance.
Class Properties

The class properties are organized as SCMO ordered set.

#defi ne PEGASUS_PROPERTY_SCMB_HASHSI ZE 64

struct SCMBCl assPropertySet _Header
{
/'l Nunmber of property nodes in the nodeArray
Ui nt 32 nunber Of Properti es;
/1 Used for name based | ookups based on the nane tags.
/[l Atag is generated by entangling the bit values of a first
/1 and last letter of a Cl MNane.

13.01.2010 12:23

PEP 348

13 of 39

file:///C:/Pegasus112/SCMO/PEP-348-SCMO_CMPI.html

/| PEGASUS_PROPERTY_SCMO HASHSI ZE i s the hash size.
/1 The index of the hashTable is cal cul ated doing a remai nder

oper at or
/1 with the name tag and hash size PEGASUS PROPERTY_SCMB HASHSI ZE

b

/1 (NameTag % PEGASUS_PROPERTY_SCMO_HASHSI ZE)

/'l The hashTabl e contains the index of the SCMBC assPropertyNode

/1 in the nodeArray.

U nt32 hashTabl e[PEGASUS PROPERTY_SCMB_HASHSI ZE] ;
/'l Relative pointer to the Cl assPropertyNodeArray;

SCvBDat aPt r nodeArray;

struct SCMBC assPropertyNode

{

b

/! I's there a next node in the hash chai n?

Si nt 32 hasNext ;
/1l Array index of next property in hash chain.
Ui nt 32 next Node;

/'l The class property
SCMBCI assProperty theProperty;

The flags of the class property indicate:

1. If a property was propagated. (propagated=1)
2. lIs a key property. (isKkey=1)

struct SCMBCl assProperty

{

b

/1l Relative pointer to property name

SCMvBDat aPt r nane;

Ui nt 32 nameHashTag;
/'l Fl ags

struct{

unsi ghed propagated: 1;
unsi gned i sKey: 1;

} flags;

/'l Relative pointer to the origin class nane
SCMvBDat aPt r ori gi nCl assNane;

/1l Relative pointer to the reference class nane
SCivBDat aPt r ref Cl assNane;

/'l Contains the default value if specified
SCMvBVal ue def aul t Val ue;

/'l Nunmber of qualifiers in the array

Ui nt 32 nurmber Of Qual i fiers;

/1l Relative pointer to SCMBQualifierArray
SCwvBDat aPt r qualifierArray;

Class Key Bindings

The SCMO class contains the ordered set for addressing the key bindings by name.
The class is storing the static data of the key bindings.

SCMO key bindings are stored with the CIMType of the property instead the CIMKeyBinding type

#def i ne PEGASUS_KEYBI NDI G_SCMB_HASHSI ZE 32
struct SCWVBKeyBi ndi ngNode

{

/!l |Is there a next node in the hash chai n?

Si nt 32 hasNext ;
/1 Array index of next property in hash chain.
Ui nt 32 next Node;

/!l Relativer pointer to the key property nane.
SCVBDat aPt r name;

13.01.2010 12:23

PEP 348

14 of 39

file:///C:/Pegasus112/SCMO/PEP-348-SCMO_CMPI.html

Ui nt 32 nameHashTag;
/'l The type of the key binding.
Cl MIype type;

struct SCMBKeyBi ndi ngSet _Header
{

/'l Nunmber of keybindings in the keyBi ndi ngNodeArray.

Ui nt 32 nunber ;

/1l Used for name based | ookups based on the name tags

[/ Atag is generated by entangling the bit values of a first

/1 and last letter of a Cl MNane.

/| PEGASUS_KEYBI NDI G_SCMB_HASHSI ZE i s the hash size.

/1 The index of the hashTable is cal cul ated doi ng a renmai nder
oper at or

/1 with the name tag and hash size PEGASUS KEYBI NDI G_SCVB_HASHSI ZE

/1 (NameTag % PEGASUS_KEYBI NDI G_SCVB_HASHSI ZE)

/1 The hashTabl e contains the index of the SCWVBKeyBi ndi ngNode

/1 in the keyBi ndi ngNodeArray.

Ui nt 32 hashTabl e[PEGASUS_KEYBI NDI G_SCVB_HASHSI ZE] ;
/'l Relative pointer to an array of SCMBKeyBi ndi ngNode.
SCMvBDat aPt r nodeArray;

b

Class Qualifiers

Qualifiers for the class and properties are stored in a fix linear array. The size is determined while traversing the
CIMClass.

This structure represents a single qualifier in SCMB. In different to the CIMQualifier the qualifier names are stored as
an enumeration of the DMTF qualifier names. This avoids the comparison of char represented qualifiers to find well
known qualifier in the CIM Server processing. An exception is an user defined qualifier. The value
QUALNAME_USERDEFINED(=0) of this enumeration indicates an user defined qualifier and the qualifier name must be
stored additionally.

struct SCMBQual ifier

{
/ 1 Bool ean fl ag
Si nt 32 pr opagat ed;
Qual i fi er NameEnum nane;
/1l The sane val ue as Cl MFl avor.
Ui nt 32 flavor;
[l if name == QUALNAME_ USERDEFI NED
/[l the relative pointer to the user defined name
SCwvBDat aPt r user Def Nane;
/1 Qualifier Value
SCMBVal ue val ue;
3

typedef SCMBQualifier SCvMBQualifierArray[];
Qualifiers Names

In SCMB the qualifiers defined by the DMTF (standardized and optional) names are mapped to an enumeration and
the corresponding display name can be found in a const char* array. The rationale for this design decision is, that
almost all class, instance, method, and property definitions are using the DMTF defined qualifiers, and user defined
qualifiers are very rare. If at all used, the number is very small (1 to 3).

For the base set of the qualifier names, the DMTF CIM Infrastructure DSP0O004 Version 2.5.0a is used.
The definitions provided here are not complete. They are cut to keep the PEP readable.

enum Qual i fi er NaneEnum

QUALNAME_USERDEFI NED=0,

13.01.2010 12:23

PEP 348

15 of 39

file:///C:/Pegasus112/SCMO/PEP-348-SCMO_CMPI.html

QUALNAME_ABSTRACT,

QUALNAVE WEEK,
QUALNAME_VRI TE
¥

static StrLit _qualifierNameStrLit[] =

STRLIT(""),
STRLI T(" ABSTRACT"),

STRLI T(" VEAK") ,
STRLI T(" WRI TE")
}

SCMBInstance

The SCMBInstance contains the instance specific data and a reference to the corresponding SCMBClass.

If a value is not present, SCMBDataPtr is set to NULL and the value of the class has to be used.

The instance flags are used to indicate if the instance properties are including:

propagated properties (deeplnheritance=true)

qualifiers (includeQualifiers=true)

class origins (includeClassOrigin=true)

if a filter is applied to the instance (isFiltered=true)

if the instance is only the bag to hold a SCMOClass(isClassOnly=true)

if instance class and/or name space name was modified. (isCompromised=true)

ogpONPE

struct SCMBI nstance_Main

{
/1 The SCMB managenent header
SCvBWgmt _Header header;
/'l The reference counter for this instance
At om cl nt r ef Count ;
/1l A absolute pointer/reference to the class SCMB for this instance
SCMXCl ass* t hed ass;
/'l Instance flags
struct{

unsi gned includeQualifiers :1;
unsi gned i ncludeCl assOrigin :1;
unsigned isFiltered: 1;

unsi gned i sClassOnly: 1;

unsi gned i sConprom sed: 1;

}f 1l ags;

/1 Nunmber of user defined key bindings

Ui nt 32 nunber User KeyBi ndi ngs;

/!l Relative pointer SCMBUser KeyBi ndi ngEl enent
SCwvBDat aPt r user KeyBi ndi ngEl enent ;

/'l Relative pointers to the name space nane and class nane.

[/ WIIl be initialized by with the values of the |inked SCMOXC ass.

[/ If it was overwitten, the new value is stored in the

SCMO nst ance
// and the the flag i sConpromi sed is set to true.

SCMVBDat aPt r i nst NameSpace;

SCMBDat aPt r i nst Cl assNane;

/1l Relative pointer to hostnane

SCivBDat aPt r host Namne;

/1 Number of key bindings of the instance

Ui nt 32 nunber KeyBi ndi ngs;

/'l Relative pointer to SCMBI nstanceKeyBi ndi ngArray
SCMBDat aPt r keyBi ndi ngArr ay;

/'l Relative pointer to SCVBPropertyFilter

13.01.2010 12:23

PEP 348

16 of 39

file:///C:/Pegasus112/SCMO/PEP-348-SCMO_CMPI.html

SCMVBDat aPt r propertyFilter

/'l Relative pointer to SCVBPropertyFilterlndexMap
SCMvBDat aPt r propertyFilterl ndexMap;

/1 Nunmber of properties of the class.

Ui nt 32 nunber Properti es;

/'l Nunmber of filter properties of the instance.

Ui nt 32 filterProperties;

/'l Relative pointer to SCMBInstancePropertyArray
SCMvBDat aPt r propertyArray;

b

Instance key bindings

The key binding values are organized in a simple array of SCVBKeyBi ndi ngVal ue.

struct SCMBKeyBi ndi ngVal ue

{
/1 Boolean flag, if the key binding was set by the provider.
Si nt 32 i sSet;
[/l The val ue of the key binding
SCMBUNi on dat a;
3

The index of an instance key binding is the same as the class. If a key binding has to be find by name, the class key
binding ordered set has to be used to find the right index.

t ypedef SCMBKeyBi ndi ngVal ue SCMBI nst anceKeyBi ndi ngArray|[];

If a key binding to be set is not part of the SCMOClass, the key binding is added to a single linked list of
SCMBUser KeyBi ndi ngEl enent :

struct SCMBUser KeyBi ndi ngEl enent

{
/1 1f not O, arelative pointer to the next elenent.
SCMBDat aPt r next El enent ;
/1 The cimtype
Cl MIype type;
/!l Relativer pointer to the key property nane.
SCwvBDat aPt r name;
/1 The val ue.
SCVBKeyBi ndi ngVval ue val ue;
3

Instance properties

The instance properties are organized in a simple array. The index of an instance property is the same as the class
property.

If a property is looked up by name, the class property ordered set is used to find the according index.

The properties of an instance contain only values set by the provider.

If an instance property does not contain a value the default value of the class is used.

t ypedef SCMBVal ue SCMBI nst ancePr opertyArray[];

Instance property filter

The property filter is implemented as a bit mask. The index of a property in the instance property array matches the
index of the property filter.

If a bit is set (1) then a property is eligible to be set and to be returned.
If a bit is not set (0), the property is filtered out and cannot be set and is not eligible to be returned.

13.01.2010 12:23

PEP 348 file:///C:/Pegasus112/SCMO/PEP-348-SCMO_CMPI.html

The array size of the property filter is (numberOfProperties / 64)
t ypedef Ui nt 64 SCVBPropertyFilter[];

If a filter is applied to an instance (flag.isFiltered=1) the SCMBPr opert yFi | t er | ndexMap array is used to
ensure that one can iterate straight fromOtofi |l terProperti es.

t ypedef Uint32 SCMBPr opertyFi |l terl ndexMap[];

The filter is initialized with the values of the SCMBClass key| ndexLi st and keyPr opert yMask .
That means, if a property is a key property, it cannot be filtered out.

SCMBValue

The value handling in SCMO is similar to the values used in CIMValue. The CIMType definitions are used.

struct SCMBVal ue

{
[/ The Cl Mlype of the val ue
Cl Mlype val ueType;
struct{
/1l 1f the value not set
unsi gned isNull:1;
// If value is a type array
unsi gned i sArray: 1;
/1 1f value is set by the provider(valid for SCMJ nstance)
unsi gned isSet: 1;
} flags;
/1 The nunber of elenents if the value is a type array.
Ui nt 32 val ueArraySi ze;
SCMVBUNi on val ue;
3

The flag i SSet is needed to identify the value was set by the provider or it was initially created by the
SCMOlnstance.

SCMBDateTime

The structure of CIMDateTimeRep has been used:

1. because no transformation has to take place at storing a CIMDateTime data object
2. It can be stored directly in the SCMBUnion. It has the same size.

t ypedef Cl MDat eTi meRep SCMBDat eTi ne;

SCMBUnion

This SCMBUnion is used to represent the values of properties and qualifiers.
Simple CIMTypes, not larger then 16 bytes, are stored directly in the union. If the CIMType is an Array, String or
Reference type the union contains a relative pointer to this value with in the SCMO memory block.

EmbeddedObjects and Embeddedlnstances are not moved into the SCMO memory block. For these data types, the
SCMBUnion contains an external reference.

uni on SCMBUnNIi on
{

struct

{

uni on

17 of 39 13.01.2010 12:23

PEP 348

18 of 39

file:///C:/Pegasus112/SCMO/PEP-348-SCMO_CMPI.html

{
Bool ean bi n;
U nt8 us;
Sint8 s8;

U nt16 ule;
Sint 16 s16;
Ui nt 32 u32;
Si nt 32 s32;
Ui nt 64 ub4;
Si nt 64 s64;
Real 32 r32;
Real 64 r64;
U nt16 c16;

}val;

/1 SCMBUni on used in array val ues.

/1 This indicates if the single array nmenber is a Null val ue.

/'l The type of size 64 is used to fill up the whol e union.

Ui nt 64 hasVal ue;
}simpl e;

SCvBDat aPtr arrayVal ue;

SCvBDat aPtr stringVal ue;

SCwvBDat eTi me dat eTi neVal ue;

/'l Used for enbedded referecnes, instances, and objects
/'l as an external references to SCMO | nstances.

SCMO nst ance* ext RefPtr;

/! This structure is used to handl e an absol ute char*
/1 including the length (without traling '\0")
struct

Ui nt 64 | engt h;

char* pchar;
}ext String;

Access Methods

The access methods to the data structures above are described as C++ class definitions.
Only complex methods are described here.

The primitive getter and setter methods are not part of this document and are added as needed.

Internal helper functions are also not described here

SCMOIlnstance class

cl ass PEGASUS COMMON LI NKAGE SCMJ nst ance
{
publi c:

/**
* Creating a SCMJ nstance using a SCMXC ass.
* @ar am baseCl ass A SCMXCl ass.
*/

SCMO nst ance(SCMOCl ass& based ass) ;

/**

* Copy constructor for the SCMO i nstance, used to inplenent
ref counti ng.

* @aramtheSCMOCl ass The instance for which to create a copy

* @eturn
*/

13.01.2010 12:23

PEP 348 file:///C:/Pegasus112/SCMO/PEP-348-SCMO_CMPI.html

SCMO nst ance(const SCMO nst ance& t heSCMJO nst ance);

/**

* Assignnent operator for the SCMO i nstance,
* @aram t heSCMOCl ass The right hand val ue

**/

SCMO nst ance& oper at or=(const SCMJ nst ance& t heSCMJ nst ance) ;

/**

* Destructor is decrenenting the refcount. If refcount is zero, the
* singele chunk nmenory object is deallocated.

*/

~SCMO nst ance()

*

Bui | ds a SCMJO nstance based on this SCMOC ass.

The net hod argunents detern ne whether qualifiers are included,
the class origin attributes are included,

and which properties are included in the new instance.

@ar am baseCl ass The SCMOCl ass of this instance.

@aram i ncludeQualifiers A Bool ean indicating whether qualifiers

/

* ok ok ok * * *

* X

the class definition (and its properties) are to be added to the
i nstance. The TO NSTANCE fl avor is ignored.

* @aram includeCl assOrigin A Bool ean indicating whet her
CassOrigin

* attributes are to be added to the instance.

* @aram propertyList Is an NULL terminated array of char* to

property

* nanmes defining the properties that are included in the created
i nst ance.

* If the propertyList is NULL, all properties are included to the
i nstance.

* | f the propertyList is enpty, no properties are added.
*
* Note that this function does NOT generate an error if a property
nanme
* is supplied that is NOT in the class;
* it sinply does not add that property to the instance.
*
*/
SCMO nst ance(
SCMCl ass& based ass,
Bool ean i ncludeQualifiers,
Bool ean i ncl uded assOri gi n,
const char** propertylList);

*

Bui |l ds a SCMO nstance fromthe gi ven SCMOCl ass and copi es all
Cl M nstance data into the new SCMJ nst ance.
@ar am baseCl ass The SCMOCl ass of this instance.
@ar am ci m nstance A Cl M nstace of the same cl ass.
@xception Exception if class nanme does not natch.
@xception Exception if a property is not part of class
definition.

* @xception Exception if a property does not match the cl ass
definition.

*/

SCMO nst ance(SCMOCI ass& baseC ass, const ClI M nstance& cim nstance);

* ok ok ok * * *

/**

Bui | ds a SCMO nstance fromthe given SCMOCl ass and copies all
Cl MObj ect Path data into the new SCMJ nst ance.
* @aram baseCl ass The SCMOCl ass of this instance.

19 of 39 13.01.2010 12:23

PEP 348 file:///C:/Pegasus112/SCMO/PEP-348-SCMO_CMPI.html

* @aram ci ninstance A Cl Mbj ectpath of the same cl ass.
* @xception Exception if class nane does not match.
*/
SCMO nst ance(SCMOCI ass& baseCl ass, const Cl Mbj ect Pat h& ci mj) ;

/**

* Builds a SCMJ nstance fromthe given ClMnstance copying all
dat a.

* The SCMOCl ass is retrieved from SCMOCl assCache using

* the class and nanme space of the Cl M nstance.

* I f the SCMOXCl ass was not found, an enpty SCMO nstance will be
returned

* and the resulting SCMJ nstance i s conprom zed.

* | f the CIl Mnstance does not contain a name space, the optional
fall back

nane space is used.

* @aram ci ninstance A ClMnstace with class nanme and name space.

* @aram al t NaneSpace An alternative name space nane.

* @xception Exception if a property is not part of class
definition.

* @xception Exception if a property does not match the cl ass
definition.

*/

SCMO nst ance(

const Cl M nstance& ci nl nstance,
const char* alt NameSpace=0,
Ui nt 64 al t NSLen=0) ;

/**

* Builds a SCMO nstance fromthe given ClMX)jectPath copying all
dat a.
* The SCMOXCl ass is retrieved from SCMOCl assCache usi ng
* the class and name space of the Cl Mbject Pat h.
* | f the SCMOCl ass was not found, an enpty SCMO nstance will be
returned
and the resulting SCMJ nstance is conprom zed.
If the Cl MXjectPath does not contain a name space,
the optional fall back nane space is used.
@aram ci nMbj A Cl Mbjectpath with nane space and nane
@ar am al t NaneSpace An alternative nane space nane.
@
/
SCMO nst ance(
const Cl MObj ect Pat h& ci nbj
const char* alt NameSpace=0,
Ui nt 64 al t NSLen=0) ;

* ok ok * % * X

/**

* Builds a SCMO nstance fromthe given ClMXject copying all data.

* The SCMOCl ass is retrieved from SCMOCl assCache using

* the class and nanme space of the Cl Mbject.

* If the SCMXC ass was not found, an enpty SCMO nstance will be
returned

* and the resulting SCMJ nstance i s conprom zed.

* |f the ClMnstance does not contain a nane space, the optional
fall back
nane space is used.
@aram ci ninstance A ClMnstace with class name and name space.
@ar am al t NaneSpace An alternative nane space nane.
@xception Exception if a property is not part of class
definition.

* @xception Exception if a property does not match the cl ass
definition.

*/

* ok * ok

20 of 39 13.01.2010 12:23

PEP 348

21 of 39

file:///C:/Pegasus112/SCMO/PEP-348-SCMO_CMPI.html

SCMO nst ance(
const Cl Mbj ect & ci mhj ect,
const char* alt NameSpace=0,
Ui nt 64 al t NSLen=0) ;

/**

* Converts the SCMJO nstance into a Cl M nstance.
* |t is a deep copy of the SCMJ nstance into the Cl M nstance.
* @aram cimnstance An enpty ClI M nstance.
*/
voi d get Cl M nstance(Cl M nstance& ci M nstance) const;

/**

* Makes a deep copy of the instance.

* This creates a new copy of the instance.

* @eturn A new copy of the SCMJ nstance object.
*/

SCMO nst ance cl one() const;

/**

* Returns the nunmber of properties of the instance.
* @aram Nunber of properties

*/

Ui nt 32 get PropertyCount () const;

/**

* CGets the property nanme, type, and val ue addressed by a positiona
i ndex.
The property nane and val ue has to be copied by the caller !
@ar am pos The positional index of the property
@ar am pnane Returns the property nane as '\0' termnated string.
Has to be copied by caller
It is set to NULL if rc != SCMO CK.
@ar am pval ue Returns a pointer to the value of property.
The value is stored in a SCMVBUNi on
and has to be copied by the caller !
It returns NULL if rc !'= SCMO OK

If the value is an array, the
value array is stored in continuous nenory.
e.g. (SCMBUni on*)value[0O to size-1]

If the value is type of Cl MI'YPE _STRI NG
the string is referenced by the structure
SCMVBUNI on. ext Stri ng:
pchar contains the absolut pointer to the
strin
| ength contains the size of the string
without trailing '\0'".
Only for strings the caller has to free pval ue !
@aram type Returns the Cl Mlype of the property
It isinvalid if rc == SCMO_| NDEX_ OUT_OF_BOUND.
@aramisArray Returns if the value is an array.
It isinvalid if rc == SCMO_| NDEX_OUT_OF_BOUND.
@aram si ze Returns the size of the array.
If it is not an array, O is returned.
It isinvalid if rc == SCMO_| NDEX OUT_OF_ BOUND.

@eturn SCMO K
SCMO NULL VALUE : The value is a null val ue.
SCMO | NDEX _OQUT_OF BOUND : G ven index not found

* Ok ok ok ok kK K ok ok ok ok F *F H(Q K K ok ok ok ok F F * % K * ok ok ok * * *

13.01.2010 12:23

PEP 348

*

/

file:///C:/Pegasus112/SCMO/PEP-348-SCMO_CMPI.html

SCMO_RC get Propert yAt (

* ok ok ok ok kX K Ok ok ok ok * * X X *

strin

* ok ok ok kK K K ok ok *F * * *(Q

~

Ui nt 32 pos,
const char**

pnamne,

Cl MType& type

const SCMBUNi on** pval ue,
Bool ean& i sArray,

Ui nt 32& size) const;

*

Gets the type and val ue of the naned property.
The val ue has to be copied by the caller

@ar am nane

The property nane

@ar am pval ue Returns a pointer to the value of property.

@ar am type

The value is stored in a SCMBUni on
and has to be copied by the caller !
It returns NULL if rc !'= SCMO OK

If the value is an array, the
value array is stored in continuous nenory.
e.g. (SCMBUni on*)value[0O to size-1]

If the value is type of Cl MI'YPE_STRI NG
the string is referenced by the structure
SCVBUNI on. ext Stri ng:

pchar contains the absolut pointer to the

| ength contains the size of the string
without trailing '"\0'
Only for strings the caller has to free pval ue !
Returns the Cl MIype of the property
It isinvalid if rc SCMO_NOT_FOUND.

@aramisArray Returns if the value is an array.

@ar am si ze

@eturn

It isinvalid if rc SCMO_NOT_FOUND
Returns the size of the array.

If it is not an array, O is returned.
It isinvalidif rc SCMO_NOT_FOUND

SCMO_OK
SCMO_NULL_VALUE :
SCMO_NOT_FOUND :

The value is a null val ue.
G ven property name not found.

SCMO_RC get Property(

const char*

name,

Cl Mlype& type
const SCMBUNi on** pval ue,
Bool ean& i sArray,

Ui nt 32& size) const;

/**

* Set/replace a property in the instance.
i s honored at

* |f the class origin is specified, it
* the property within the instance.
* Not e:
i nstance/cl ass can

* be set/replaced.

i dentifying

Only properties which are already part of the

* @aram nane The name of the property to be set.

* @aramtype The Cl Mlype of the property

* @aramvalue A pointer to the value to
property.
*

*

*

| f the val ue NULL, a null
If the value is an array,

*

22 of 39

be set at the naned

The value has to be in a SCMBUni on.
The value is copied into the instance
val ue i s assuned.

the value array has to be

13.01.2010 12:23

PEP 348 file:///C:/Pegasus112/SCMO/PEP-348-SCMO_CMPI.html

stored in continuous nenory.
e.g. (SCwvBUni on*)value[0 to size-1]

* ok ok *

To store an array of size 0, The val ue pointer has
to

not NULL (value !'= NULL) but the size has to be O
(size == 0).

the string is referenced by the structure
SCMBUNi on. ext St ri ng:

*

*

*

* If the value is type of Cl MTYPE STRI NG,

*

*

* pchar contains the absolut pointer to the

g
* I ength contains the size of the string
* without trailing '\0'".
* @aramisArray Indicate that the value is an array. Default
@aram si ze Returns the size of the array. If not an array this
this paranmeter is ignorer. Default O.
@aramorigin The class originality of the property.
If NULL, then it is ignorred. Default NULL.

@eturn SCMO K

SCMO NOT_SAME ORIG@ N : The property nane was found,

* ok ok * * -

but

the origin was not the sane.
SCMO NOT_FOUND : G ven property nane not found.
SCMO WRONG _TYPE : Named property has the wong type.
SCMO _NOT_AN ARRAY : Naned property is not an array.
SCMO I S AN _ARRAY : Named property is an array.

* ok * * * X

/

SCMO _RC set PropertyWthOri gi n(
const char* nane,

Cl Mlype type,

const SCMBUNi on* val ue,
Bool ean i sArray=fal se,

U nt32 size = 0,

const char* origin = NULL);

/**

* Rebuild of the key bindings fromthe property val ues

* if no or inconplete key properties are set on the instance.
* @xception NoSuchProperty

*/

voi d bui | dKeyBi ndi ngsFronProperties();

*

/
Set/replace a property filter on an instance.

The filter is a white list of property nanes.

A property part of the Iist can be accessed by nane or index and
is eligible to be returned to requester.

Key properties can not be filtered. They are always a part of the
instance. If a key property is not part of the property I|ist,

it will not be filtered out.

@aram propertyList I's an NULL term nated array of char* to
property names

* ok ok ok * * * ¥ X

*

*/
voi d setPropertyFilter(const char **propertylList);
/ *
Gets the hash index for the named property. Filtering is ignored.
@ar am t heName The property name
@ar am pos Returns the hash index.
@eturn SCMO_ K
SCMO | NVALI D_PARAMETER: nanme was a NULL pointer.

E o

23 of 39 13.01.2010 12:23

PEP 348

24 of 39

file:///C:/Pegasus112/SCMO/PEP-348-SCMO_CMPI.html

* SCMO NOT_FOUND : G ven property name not found.
*/
SCMO_RC get Propert yNodel ndex(const char* nane, Ui nt32& pos) const;

/**

* Set/replace a property in the instance at node index.
* Note: If node is filtered, the property is not set but the return
val ue
* is still SCMO OK
* @aram index The node index.
* @aramtype The Cl Mlype of the property
* @aram plnvVal A pointer to the value to be set at the naned
property.
* The val ue has to be in a SCMBUni on
The value is copied into the instance
If the value == NULL, a null value is assuned.
If the value is an array, the value array has to be
stored in continuous nenory.
e.g. (SCvBUnion*)value[0O to size-1]

* ok ok ok * * *

To store an array of size 0, The value pointer has
to

not NULL (value !'= NULL) but the size has to be O
(size == 0).

If the value is type of Cl MI'YPE_STRI NG
the string is referenced by the structure
SCMVBUNI on. ext Stri ng:
pchar contains the absolut pointer to the
strin
| ength contains the size of the string
without trailing "\0'
@aramisArray Indicate that the value is an array. Default

* ok F(Q K K K F ok ok ok

fal se.
* @aram size The size of the array. If not an array this
* this paraneter is ignorer. Default O.
* @eturn SCMO_ K
* SCMO | NDEX OQUT_OF BOUND : G ven index not found
* SCMO WRONG TYPE : The property at given node index
* has the wong type.
* SCMO_NOT_AN_ARRAY : The property at given node index
* is not an array.
* SCMO_ | S_AN_ARRAY : The property at given node index
* is an array.
*/
SCMO_RC set Propert yW t hNodel ndex(
Ui nt 32 node,
Cl Mlype type,
const SCMBUNi on* plnVval,
Bool ean i sArray=fal se,
Uint32 size = 0);

*

Set/replace the naned key binding using binary data
@ar am nane The key bi ndi ng nane.
@aram type The type as Cl Mlype.
@ar am keyval ue A pointer to the binary key val ue.
The value is copied into the instance
If the value == NULL, a null value is assuned.
@ar am keyval ue A pointer to the value to be set at the key

gl

* ok ok ok * X K *

bi ndi
The keyval ue has to be in a SCMBUni on

The keyvalue is copied into the instance.

If the keyvalue == NULL, a null value is assuned.

* * k3

13.01.2010 12:23

PEP 348

25 of 39

file:///C:/Pegasus112/SCMO/PEP-348-SCMO_CMPI.html

*

* If the keyvalue is type of ClI MIYPE_STRI NG

* the string is referenced by the structure

* SCMBUNi on. ext Stri ng:

* pchar contains the absolut pointer to the
string

* I ength contains the size of the string

* without trailing "\0'.

* @eturn SCMO_ K

* SCMO | N\VALI D_PARAMETER : G ven name or pval ue

* is a NULL pointer.

* SCMO TYPE_M SSMATCH : G ven type does not

* mat ch to key binding type

* SCMO _NOT_FOUND : G ven property nane not found.

*

/

SCMO_RC set KeyBi ndi ng(

const char* nane,

Cl Mlype type,

const SCMBUni on* keyval ue);

/**
* Set/replace the key binding at node
* @aram node The node index of the key.
* @aramtype The type as Cl MIype.
* @aram keyvalue A pointer to the value to be set at the key
bi ndi ng,
* The keyval ue has to be in a SCMBUni on
* The keyvalue is copied into the instance.
* If the keyvalue == NULL, a null value is assuned.
*
* If the keyvalue is type of Cl MIYPE_STRI NG
* the string is referenced by the structure
* SCMBUNi on. ext Stri ng:
* pchar contains the absolut pointer to the
string
* | ength contains the size of the string
* without trailing "\0'
* @eturn SCMO_ K
* SCMO_| NVALI D_PARAMETER : G ven pvalue is a NULL
poi nter.
* SCMO _TYPE_M SSMATCH : G ven type does not
* mat ch to key binding type
* SCMO | NDEX OUT_OF BOUND : G ven index is our of
range.
*/
SCMO_RC set KeyBi ndi ngAt (
Ui nt 32 node,
Cl Mlype type,
const SCMBUNi on* keyval ue);
/**

* Clears all key bindings in an instance.

* Warning: External references are freed but only the interna

* control structures are resetted. No nenory is freed and at
setting

* new key bindings the instance will grow in nmenory usage.

**/

voi d cl ear KeyBi ndi ngs() ;

/**

* Gets the key binding count.

* @eturn the nunber of key bindings set.
*/

Ui nt 32 get KeyBi ndi ngCount () const;

13.01.2010 12:23

PEP 348

26 of 39

file:///C:/Pegasus112/SCMO/PEP-348-SCMO_CMPI.html

/**
* CGet the indexed key binding.
* @armidx The key bining index
* @arm pnanme Returns the nane.
* Has to be copied by caller
* It isinvalid if rc == SCMO_| NDEX_OUT_OF_BOUND
* @aramtype Returns the type as Cl MIype.
* It isinvalid if rc == SCMO_| NDEX_OUT_OF_BOUND
* @aram keyval ue A pointer to the binary key val ue.
* Has to be copied by caller
* It isonly valid if rc == SCMO_OK.
* @eturn SCMO K
* SCMO_NULL_VALUE : The key binding is not set.
* SCMO | NDEX _OUT_OF BOUND : G ven index not found
*
*

~

SCMO_RC get KeyBi ndi ngAt (
Ui nt 32 idx,
const char** pnane,
Cl MType& type
const SCMBUNi on** keyval ue)

*

CGet the naned key bi ndi ng.

@aram type Returns the type
It isinvalid if
@ar am keyval ue Returns a po

and has to be

pchar
strin
| ength

@ar am keyval ue A pointer to
Has to be copied
It is only valid
SCMO_ K

SCMO _NULL_VALUE
SCMO_NOT_FOUND :

@eturn

* ok ok ok kK K K(Q ok ok *F *F F % K K F ok ok *k * *

~

SCMO_RC get KeyBi ndi ng(
const char* nane,
Cl MType& pt ype,
const SCMBUNi on** keyval ue)

/**

It returns NULL if

Only for strings the caller

const ;

@ar m name The name of the key binding.

as Cl Mlype.
rc == SCMO_| NDEX_OUT_OF_BOUND.
nter to the val ue of keybi ndi ng.

The value is stored in a SCMVMBUNi on

copied by the caller !
rc !'= SCMO_CK.

If the value is type of Cl MI'YPE_STRI NG

the string is referenced by the structure
SCMVBUNI on. ext Stri ng:

contains the absolut pointer to the

contains the size of the string
without trailing '\0O

has to free pval ue
the binary key val ue.

by caller.

if rc == SCMO_CK.

The key binding is not set.
G ven property name not found.

const ;

* Determ nes whether the object has been initialized.

* @eturn True if the object has not been initialized,

ot her wi se.
*/

fal se

Bool ean isUninitialized() const {return (inst.base == NULL); };

private:

/**

13.01.2010 12:23

PEP 348

27 of 39

file:///C:/Pegasus112/SCMO/PEP-348-SCMO_CMPI.html

* A SCMO nstance can only be created by a SCMOC ass
*/
SCMA nst ance();

void _initSCMJ nstance(Bool ean incl Qual, Bool ean incl Origin);
uni on{
/1 To access the instance main structure
SCMBI nst ance_Mai n *hdr;
/'l To access the nenory nanagenent header
SCVMBMgmt _Header *mem
/| Generic access pointer
char *base;
}inst;

friend class SCMOC ass;
i

The method setPropertyFilter() accepting a property list and a key property list is not implemented by the
SCMOlnstance. The rational for this design decision is, that a key property is not filtered out by the implementation of
the setPropertyFiler() method and therefore the key list can be ignorred.

At converting a CIMInstance to a SCMOlnstance, it is assumed that the CIMInstance has no filter applied on. The
rational for this is, that the request contains the property filter list and the for CIMInstances the filter is applied at the
end point (like XMLWriter). All properties of the CIMInstance are set on SCMOInstance and no filer is applied on the
SCMOlnstance.

SCMOClass class

cl ass PEGASUS COMMON LI NKAGE SCMOCI ass

L
publi c:

/*-k

* Constructs a SCMOCl ass out of a Cl M ass.

* @aramtheCl Ml ass The source the SCMOCl ass is constructed off.

* @ar am naneSpaceNane The nanespace for the class, optional.

* @eturn

*/

SCMOCl ass(const Cl MCl ass& t heCl MCl ass, const char* al t NaneSpace=0);

/**

* Copy constructor for the SCMO cl ass, used to inplenent
ref counti ng.

* @aramtheSCMOCl ass The class for which to create a copy

* @eturn

*/

SCMOCl ass(const SCMOCl ass& t heSCMOC! ass) ;

/**

* Assignnent operator for the SCMO cl ass,
* @aram t heSCMOCl ass The right hand val ue

**/

SCMOCI ass& oper at or =(const SCMOC| ass& t heSCMOC ass)

/*-k

* Destructor is decrenenting the refcount. If refcount is zero, the
* singele chunk nmenory object is deallocated.

*/

~SCMXCl ass() ;

/**

* Converts the SCMOXCl ass into a Cl MJ ass.
It is a deep copy of the SCMOCl ass into the Cl MJ ass.
* @aramcinClass An enpty Cl MJ ass.

13.01.2010 12:23

PEP 348

28 of 39

file:///C:/Pegasus112/SCMO/PEP-348-SCMO_CMPI.html

*/
voi d get Cl MCl ass(Cl MCl ass& ci nCl ass) const;

/**

* Cets the key property names as a string array

* @eturn An Array of String objects containing the nanmes of the
key

* properties.

*/

voi d get KeyNanesAsStri ng(Array<Stri ng>& keyNames) const;

/**

* Determi nes whether the object has been initialized.

* @eturn True if the object has not been initialized, false
ot herwi se.

*/

Bool ean isUninitialized() const {return (cls.base == NULL); };

private:

/**

* Constructs an uninitialized SCMOCl ass obj ect .
*/
SCMOCI ass() ;

uni on{
/1l To access the class main structure
SCMBC ass_Mai n *hdr;
/'l To access the nenory managenent header
SCMBMgnt _Header *nem
/'l Generic access pointer
char *base;

}cls;

Usage of SCMO for the CMPIProviderManager implementation

To implement SCMO for CMPI basically the implementation of CMPIlInstance and CMPIObjectPath have to be reworked
to make use of the new SCMO data structures described above. Both CMPI types are implemented by the
SCMOlnstance class. Other CMPI data types are only redefined where necessary to accelerate the implementation of
SCMO Instances.

This affects the CMPIBrokerEnc, CMPIlInstance and CMPIObjectPath function tables (only listing functions that have
significant changes):

CMPIBrokerEncFT

® function newObjectPath:
Retrieves the SCMOClass object that matches the given namespace and classname from the CMPI Class Cache
and derives a SCMOlnstance object from this SCMOCIlass. The SCMOlnstance is returned as CMPIObjectPath*
encapsulated in a CMPIObject.
Creation of stale CMPIObjectPaths for a non-existent or undefined namespace/classname combination is
prohibited to prevent inconsistent CMPIObjectPaths and CMPIInstances.

® function newlnstance:
Creates new SCMOInstance object pointing to the same SCMB data as the SCMOInstance representing the

passed in CMPIObjectPath. For this a special copy constructor of SCMOInstance is The new SCMOInstance is
returned as CMPIInstance* encapsulated in a CMPIObject.

CMPlInstanceFT

® function release:

13.01.2010 12:23

PEP 348 file:///C:/Pegasus112/SCMO/PEP-348-SCMO_CMPI.html

Removes the SCMOlnstance from the thread context and deletes it. This decreases the refcount of the
associated SCMB object and eventually deletes the SCMB when the refcount becomes zero.

® function clone:
Returns a 1:1 copy from the SCMOInstance, including a new copy of the associated SCMB data object with a
refcount of 1.
The new SCMOInstance is returned as CMPIlInstance* encapsulated in a CMPIObject.

® function getProperty/getPropertyAt:
Returns a copy of the named property in the form of a memory managed SCMOProperty encapsulated as
CMPIData

® function setProperty/setPropertyWithOrigin:
Updates the named property with the given value on the instance. The CMPIValue is used unchanged over the
existing implementation except for the complex types of CMPIlInstance and CMPIObjectPath or arrays of these

types.

® function getObjectPath:
Simply returns a pointer to this SCMOInstance encapsulated as CMPI1Object, casted to CMPIObjectPath.

® function setPropertyFilter:
Sets the propertyFilter on the SCMOInstance using the setPropertyFilter() method. The key properties
argument is ignored, since the key information is already obtained from the SCMOClass.

® function setObjectPath:
Updates the ObjectPath part of the SCMOInstance with the classname, namespace and keys from the given
CMPIObjectPath.
If the namespace and classname do not match the current values defined for the CMPIlInstance, the function
will fail with because it would otherwise leave the CMPIlInstance in an inconsistent state.

CMPIObjectPathFT

® function release:
Removes the SCMOInstance behind the CMPIObjectPath from the thread context and deletes it. This decreases
the refcount of the associated SCMB object and eventually deletes the SCMB when the refcount becomes zero.

® function clone:
Returns a 1:1 copy from the SCMOlnstance, including a new copy of the associated SCMB data object with a
refcount of 1.
The new SCMOInstance is returned as CMPIObjectPath* encapsulated in a CMPIObject.

® function setNameSpace/setClassName:
Updates the namespace/classname combination on the CMPIObjectPath (SCMOlInstance). To prevent
inconsistencies, changed new values will result in a lookup of the new SCMOClass and a validation of the
SCMOlnstance. Invalid namespace/classname combinations (class definition not available in the repository) will
result in an error.

® function addKey:
Updates the value for the key in the CMPIObjectPath (SCMOInstance) if the key name and type are valid for the
class for which the CMPIObjectPath was created.

CMPI Class Cache updates

The CMPI class cache is changed to cache SCMOCIlass objects rather than CIMClass objects.

For this a new method getSCMOClIass is added which caches SCMO Classes instead of CIM Classes. It returns a
reference to an SCMOClIass from the class cache.

All SCMOlnstances hold references to the SCMOClass stored in the class cache. The SCMOCIass object itself is ref
counted, so when the cache is updated with a new copy of a SCMOClass, the SCMOInstances still refer to their original
copy, which will be deleted when the last SCMOInstance that references this SCMOCIass object is deleted.

The key for SCMO classes is still namespace+classname.

When no entry exists method getSCMOCIass () tries to obtain the SCMOClass from the SCMOClassCache, stores the
original copy in the cache (refcount++) and returns a new copy to the caller (refcount++).

SCMO and memory management

The SCMO objects created via any of the mbEncNewXXX functions in CMPI_BrokerEnc are memory managed like in
the previous implementation by using the CMPIObject wrapper class, which puts an anchor on the thread context for
releasing the memory when going out of scope.

29 of 39 13.01.2010 12:23

PEP 348

30 of 39

file:///C:/Pegasus112/SCMO/PEP-348-SCMO_CMPI.html
For this new CMPI10Object constructors for SCMOInstance will be implemented for CMPIInstance and CMPIObjectPath.

Example of SCMOClass and SCMOInstance allocation

SCMOlnstance / SCMOClass

Creating a CMPlInstance for a class not yet in Cache

Broker: :CHMNewCbjectPath
MO0 a=s=ss =cmolla==s = Cla=sCache: tget3CHDClass

CrTiass =is = gemtiassl) _______________._.—-—-—-—'—'_'_'J'

=omolls = pnew IO loess (cl=])
Cache. in=sert (scmolls=]

L

returmn “scmolls

scmolnst = new 3M0Instance (scmollas=s];

re=tuIm new ('Jd:E'I_{bjEL'b[smnIn:t-]]
Eroker: :CHNewInstance (objPath¥)

scmolnst = new 30Instance [cbjPath. ﬂ.nnz[]]

TETCUIT M&EwW CMPI_CI:] =ct (=omoIn=t) |
SCMOCIlass new and delete functions are
only called by the CMPI or SCMO
ClassCache!

*Counter value in final sta

CMPIProviderManager updates for SCMO

Due to the new implementation of CMPIObjectPath and CMPIlInstance, the CMPI Provider Manager needs to convert
objects of type CIMObjectPath and CIMInstance into objects of type SCMOInstance when passing them to a CMPI
provider. This affects most of the CMPIxxxXMIFT functions as well as the CMPIBrokerFT functions which return object
paths or instances or enumerations of those.

For this according constructors of SCMOInstance are provided which can do this conversion and the
CMPIProviderManager will use these functions to convert CIMxxx type objects into SCMOInstance objects before
passing them to a CMPI Provider.

The provider upcalls implemented by the CMPIBroker will use the CIMResponseData class to convert incomming
CIMxxx objects into SCMOInstances where necessary. (see also Upcall for CMPI provider manager and providers)

Data transport and transformation of SCMO objects through the CIM Server

With the introduction of the new SCMO data representation it is necessary to transport and convert the new
representation into all other possible data representations. Today OpenPegasus does support the representation of
data internally as Binary (OOP optimization), InternalXml (used to avoid transformation in a simple Out-of-Process)
and C++ default objects. All those formats are used primarily in responses, stored in CIMResponseMessages. With the
introduction of the binary representation for some of the CIM operations (Getlnstance, Enumeratelnstances,
ExecQuery, Associators) the classes CIMInstanceResponseData, CIMInstancesResponseData,
CIMObjectsResponseData have been introduced to carry the data representations for their respective response
messages.

On further extension of the binary representation to other CIM operations the number of the CIMxxxResponseData
classes would have further grown with some considerable code replication necessary.

To avoid that code replication and to keep complexity simple in other code parts using response data the single class
CIMResponseData is used.

CIMResponseData

13.01.2010 12:23

PEP 348

31 of 39

file:///C:/Pegasus112/SCMO/PEP-348-SCMO_CMPI.html

This class serves the purpose to not only hold all known representations of response data, but also is capable to
transform each format into another one. For efficency, data is only transformed on request. To allow binary or xml
generation of output send to a client without a transformation of the SCMO format to C++ default or vice versa,
CIMResponseData also holds the two functions encodeXmlIResponse() and encodeBinaryResponse().

The following picture shows the different formats and transformations that are supported by CIMResponseData.

SCMO Binary k SCMO Binary
] Out of Process|
ICIMOperation- |1 Binary Mode|
ResponseEncoder CIMResponseMessage
[AncmymousPipe)
XML (CIM owver
HTTP) /f Internal XML
CIMResponseData
IClient and CIMInstance n.‘____h\ CIMInstance
Provider CIMObjectPath - CIMObjectPath)
CIMObject CIMObject ProviderManagers
(CIMClientRep,
ICIMOMHandleRep) \ C-IFFI-NEJF:%’:I:::
SCMOInstance M SCMOInstance

The class CIMResponseData can store all four different data representations: CIM (aka C++ default), SCMO, binary
and InternalXML at the same time. The bit flags field _encoding holds the following enumeration values: enum
ResponseDataEncoding {RESP_ENC_CIM = 1, RESP_ENC_BINARY = 2, RESP_ENC_XML = 4, RESP_ENC_SCMO = 8};
SCMO Binary and Binary are both represented as binary encoding, an explanation to the "How" will follow later on.

The different provider managers can create SCMO or C++ default objects and insert them into CIMResponseData, just
as well can binary or internal Xml be received from an Out of Process agent and placed into CIMResponseData. On the
consumer side, either the CIMOperationResponseEncoder can retrieve a binary or Xml representation of the response
objects by using the aforementioned functions encodeXmIResponse() and encodeBinaryResponse(), or Clients and
Provider can consume what's in CIMResponseData as C++ default objects or SCMO objects(instances).

The capability of CIMResponseData to transform every data representation into each other allows a much simpler
approach for transporting data through the CIM server, because it relieves the consumer from needing knowledge
about the actual data representation.

As the type of data in a CIMResponseData object is specifc to a CIM request type, CIMResponseData also stores the
expected _dataType using the following enumeration:

enum ResponseDataContent { RESP_INSTNAMES = 1, RESP_INSTANCES = 2, RESP_INSTANCE = 3,
RESP_OBJECTS = 4, RESP_OBJECTPATHS =5 };
The _dataType is used to protect CIMResponseData from accepting data types invalid for the CIM response.

Transport of response data through the CIM server In-Process

The following picture shows the for this design relevant parts of the data flow for the simplest possible case, an
In-Process running CIM Server and providers not making upcalls. On the next pictures the flow will be extended by
upcalls and the Out-of-Process mode.

No upcalls

1. First a request is received from an user on a client.

2. After decoding and authorizing the request, the generated CIMRequestMessage which holds C++ object data is
sent to the CIMRequestDispatcher

3. The CIMOperationRequestDispatcher reads the CIMRequestMessage, determines the responsible providers and
provider managers and dispatches the request message.

4. The request message is handed by the ProviderManagers to their responsible providers.

5. The providers deliver instances, objects, instance names or object paths by using the SimpleResponseHandlers
which are extended to also hold SCMOlnstances.

6. Using the transfer function of the OperationResponseHandlers a provider initiates that the C++ default objects
and SCMOlnstances are taken from the SimpleResponseHandlers and placed in the response message in
CIMResponseData.

7. The operation aggregator takes the response messages and combines them into a single response. As
CIMResponseData can hold all four data representations at once, it is not necessary to do a transformation of
the data from one format into another.

8. The CIMOperationResponseEncoder uses the functions CIMResponseData::encodeBinaryResponse() and
CIMResponseData::encodeXmIResponse() to get the clients requested encoding of the response data.

13.01.2010 12:23

PEP 348

file:///C:/Pegasus112/SCMO/PEP-348-SCMO_CMPI.html

HTTPACceptor CIMODperationRequestDispatc her
HTTPConnection
CIMOperationReguestDecoder _;_r-—‘[cmngq}dsg 3
CIMOperationReqAutharizer 4 ProviderManager
jOperationfspHd| |SimpleRspHal
OperationAggregators
CIMHRspMsg
transfer(} deliger()
! CidRspData
spMsg
1 ™~ e °
CidRspliata [y CIMAspMsg
- CMRspData
5 [Provider 1 | | Provider 2
CIMOperalionRespenseEncoger
‘ OfEaspores et #mooelreny e g
& SpMsg
= CMRspData
XML
HTTPACCeptor CiMOperationfequestDispatcher
HTTPCanmection
CIMOperationRequestDecoder | .
ClMOperationRegAuthorizer FroviderManager
4 e —
I T—
! [OperationRspHdl [SimpleRspHdl
,."'l OperationAggregators - B pH pleRsp
/ CIMRspMsg
}.fr | — tramsfer] b
Wiz — CMAspData
/ CiMRspMsg ,//
/ CMAspData T CiMRzpMzg |
f
! mMa
/ L r Y CMRop vt C++Default CMPI
/ -~ Provider Provider
/ K
klMOperat-nnRespons«eEncmerI 1a 1b
5h
a CIMOMHandle CMPIBroker
[DatafgetSCMO()
CIMRspData::g ectsi)
CIMRspData:getin L]
CIHRspHIsD CIMRspData::gutinstagcoeMames()
CIMRspData CIMRspDatacgetinftance])
[dl] andleRep
IntermalCIMOMHandle
2 aa
3 == ab
CMRspOata

Figure 2 with Upcall

An upcall

To allow for an easier understanding the same picutre as used for the upcall-less scenario before is used here,
extended by what's needed for an upcall. As the handling is slightly different between the CMPI provider manager and
providers and the C++ Default provider manager and providers, the flow is split in step 1a-5a and 1b-5b.

32 of 39 13.01.2010 12:23

PEP 348

33 of 39

file:///C:/Pegasus112/SCMO/PEP-348-SCMO_CMPI.html

Upcall for C++ default provider manager and providers

la. The provider does make an upcall through the unchanged CIMOMHandle interface as defined in
CIMOMHandle.h against the CIMOMHandleRep, which in the In-Process case is represented by a
InternalCIMOMHandle.

2. The InternalCIMOMHandle does process the request just as before by putting a request message on the
queue where it is taken off from by the CIMOperationRequestDispatcher.

3. The CIMOperationRequestDispatcher has processed the request and returns the ResponseMessage which
contains a CIMResponseData object (that can hold SCMO instances and C++ default objects).

4a. CIMOMHandleRep which used InternalCIMOMHandle to take the CIMResponseData object from the
ResponseMessage returns the CIMResponseData object to its caller class CIMOMHandle.

5a. CIMOMHandle then calls the respective getXXX() function [getObjects(), getinstances(),
getinstanceNames(), getinstance()] to retrieve the C++ default representation as required by the provider. On
returning C++ default objects CIMResponseData might do an opaque data transformation which does not have
an effect to the provider.

Upcall for CMPI provider manager and providers

la. The provider does make an upcall through the CMPIBroker interface directly against the CIMOMHandleRep,
which in the In-Process case is represented by a InternalCIMOMHandle. The CIMOMHandle interface is
circumvented and not used anymore by CMPIBroker.

2. The InternalCIMOMHandle does process the request just as before by putting a request message on the
queue where it is taken off from by the CIMOperationRequestDispatcher.

3. The CIMOperationRequestDispatcher has processed the request and returns the ResponseMessage which
contains a CIMResponseData object (that can hold SCMO instances and C++ default objects).

4a. CIMOMHandleRep which used InternalCIMOMHandle to take the CIMResponseData object from the
ResponseMessage returns the CIMResponseData object to its caller class CIMOMHandle.

5a. CMPIBroker then calls the getSCMO() function to get the SCMOInstances and provides the CMPI layer
around it required by the CMPI provider. On returning SCMO instances, CIMResponseData might do an opaque
data transformation which does not have an effect to the provider.

ResponseHandlers

The major aspects are that the CIMOMHandle interface is not changed and the CIMOMHandleReps now return
CIMResponseData, which then can be transformed into the target format by either the CIMOMHandle or the
CMPIBroker.

How ProviderManagers and provider handle the data using the ResponseHandlers in step 4 and 5 shall be explained in
more detail here.

Starting with the OperationResponseHandlers, response data is stored in class CIMResponseData and can be
consumed in whatever format necessary. To allow CMPI providers to deliver the response data in as SCMO instances,
the SimpleResponseHandlers are extended to hold an Array<SCMOInstance=>.

The following picture shows the necessary changes and modifications to the ResponseHandlers setup using the
example of the getlnstance and enumeratelnstance CIM requests.

13.01.2010 12:23

PEP 348 file:///C:/Pegasus112/SCMO/PEP-348-SCMO_CMPI.html

ResponseHandler

InstanceResponseHandler| |SimpleResponseHandler

deliver{CIMInstance) processingl(); -
complete); OperationResponseHandler
size(): transfer();

deliver{SCMOInstance)
CIMRequestMessage* request;

\‘/ CIMResponseMessage* _response;

SimplelnstanceResponseHandler

deliver(CIMInstance)
Array<CIMinstance> getObjects()
size().
deliver(SCMOInstance);
Array<SCMOInstance=
getSCMOObjects();

Array<CIMinstance> _objects;

Array<SCMOInstance> scmoObjects;

EnumeratelnstancesResponseHandler GetinstanceResponseHandler
deliver{CIMInstance); deliver{CIMInstance);
transfer(); transfer();
deliver(SCMOInstance); deliver(SCMOInstance);
added functions/members Il"‘

changed functions/members
pure abstract class (Interface)

The abstract class ResponseHandler is not changed.

The class OperationResponseHandler does not really change, but the CIMResponseMessage now holds the
CIMResponseData object.

The interface class InstanceResponseHandler (pure virtual) is extended by a deliver function to deliver a
SCMOlnstance.

34 of 39 13.01.2010 12:23

PEP 348

35 of 39

file:///C:/Pegasus112/SCMO/PEP-348-SCMO_CMPI.html

The implementation class SimplelnstanceResponseHandler now also implements the deliver of a SCMOInstance by
storing the SCMO instances in an Array<SCMOInstance> as well as it allows to retrieve SCMO data by function
getSCMOODbjects(). That function is used by the InternalCIMOMHandle for provider upcalls, but more to that later.

Of course the size() needs to be changed too, as a SimplelnstanceResponseHandler now can hold C++ default objects
as well as SCMO instances.

The specific OperationResponseHandlers (EnumeratelnstancesResponseHandler, GetlnstanceResponseHandler) which
also inherit from SimplelnstanceResponseHandler have the primary task to take data from the specific
SimpleResponseHandlers and place it on the response message. For that the function transfer() is used, which is
changed to place the data onto the CIMResponseData object that resides on the response messages.

Transport of response data through the CIM server Out of Process

In the Out-of-Process communication case the AnonymousPipe is used to return the response of the called provider
and the ClientCIMOMHandle is used for upcalls.

The ClientCIMOMHandle is changed to use the CIMClientRep (CIMClient representation) directly, that way the
CIMClient interface does not need to be changed.

The following picture shall describe the change to the CIMClient a little more detailed:

Before Introeduction of SCMO After Introduction of SCMO

1
1
i
T C++Defaut || [C++ Default
1
1
CIMClient.cpp| CIMInstance 1 CIMClient.cpp
) 1 CiM
CIMObject 1
CIMClientRep| CiMObjectPath : Response CIMClientRep
1 Data
Array=<...= 1
i
1
1
!

On the CIMClient interface no change is necessary, CIMClient.cpp is extended to use the getXXX() functions to retrieve
C++ default objects from the CIMResponseData object returned by CIMClientRep.

The difference in the Out of Process case is that data is stored in CIMResponseData() by the clients class
CIMOperationResponseDecoder, which places the retrieved binary or Xml in CIMResponseData. Only at request, by
either a client, the CIMOMHandle or the CMPIBroker, does the retrieved data get transferred back into SCMO
instances or C++ default objects.

Overview of binary encoding for SCMO objects

For the Out of Process mode, as well as local clients, the CIM Server was extended to communicate using a binary
protocol. The SCMO implementation supports this feature too. The central function that triggers the encoding is
encodeBinaryResponse() in class CIMResponseData.

Encoding SCMO objects the same way to binary as done for C++ default objects would be unnecessary inefficent, as
SCMO data is stored in memory chunks and can be dumped in a single step. Therefor the protocol is extended to write
a marker about the kind of binary object (SCMO or CIM) right before writing an
object(CIMInstance,CIMObjectPath,SCMOInstance etc.).

As SCMOlnstances consist of SCMOInstance, SCMBInstance_Main (the instances memory block), SCMOClass and
SCMBClass_Main (the class memory block) some marshalling has to be done. Also, SCMOlnstance can contain
embedded instances or instance path properties which are realised as external references to a SCMOIlnstance.

To explain the marshalling algorithmic used, the following picture shall serve as an example of how a complex
SCMOlInstance might look like and which components need to marshalled.

13.01.2010 12:23

PEP 348 file:///C:/Pegasus112/SCMO/PEP-348-SCMO_CMPI.html

Starting Point SCMOInstance SCMOClass a |
ExtRef 0

A
tr_2
+ ptr_1 ExtRef 1 * PR

| SCMBInstance_MainA

SCMBClass_Main
alpha

SCMOInstance
B SCMOInstance
* ptr_3

c
ExtRef 4 * ptr_4
| SCMOClass y |<—| 5CMBInstance MainB

| SCMBInstance MainC
‘ ptr_5
ExtRef 5

ExtRef 7

SCMOInstance

D
* ptr_&

¢ ptr_7
| SCMBInstance_MainD |

iExtH.ef_ﬁ

tr 7
| SCMOClass B" I—bp = sc“m:::: -Main

SCMBClass Main
gamma

| SCMOClass B' |

In this example the complex SCMOInstance A shall be encoded as binary. The corresponding class is stored in
SCMOClass alpha.

Further two embedded instances/objectpath properties reside in SCMOlnstance A, namely SCMOInstance B and
SCMOlnstance C.

SCMOlnstance C uses SCMOClass beta prime. SCMOInstance B uses SCMOClass gamma and also has another
embedded instance property with SCMOlnstance D stored. SCMOInstance D holds SCMOClass beta prime prime.
SCMOClass beta prime and SCMOCIlass beta prime prime point to the same memory block (SCMBClass_Main beta).

Encoding

The encoder runs along an array of SCMOInstances and recursively traverses through each SCMOlnstance external
reference.

For each SCMOlnstance it records the referenced class and external references to other SCMOInstances in a set of
tables, which are later used by the receiver to restore these references.

For this pupose the following three tables are created:

1. ClassTable
An array of pointers to the SCMClass_Main objects.
One entry for each class that is referenced by all instances to be encoded.
The order in which the SCMOClasses appear in this table is the same order as encoded.

2. InstanceToClassResolutionTable
A two column table that connects SCMOInstances to SCMOClasses.
Column 1 contains the SCMBInstance_Main pointer for an instance, and column 2 contains the index for the
ClassTable at which the corresponding SCMBClass_Main pointer is stored.
This table contains one row for each SCMOInstance (including referenced SCMOIlnstances) to be encoded.
The order in which the SCMOIlnstances appear in this table is the order in which they are encoded.

3. InstanceResolutionTable
A two column table that connects SCMOInstances to their referenced SCMOInstances.
Column 1 contains the SCMBInstance_Main pointer for a referenced instance, and column 2 contains the index
for the InstanceToClassResolutionTable at which the corresponding SCMBInstance_Main pointer is stored.
This table contains one row for each referenced SCMOInstance to be encoded.
The order in which the SCMOInstances appear in this table is the order in which they were found while
recursively traversing the tree of SCMOInstances to be encoded.
SCMOlnstance references are restored in the same order as they are listed in this table.

In the above example the tables would look as follows:

ClassTable:

36 of 39 13.01.2010 12:23

PEP 348 file:///C:/Pegasus112/SCMO/PEP-348-SCMO_CMPI.html

SCMBClass_Main*

|

‘ beta

‘ gamma

‘ alpha
InstanceToClassResolutionTable:

‘ SCMBInstance_Main* ‘ Class Index#
| D 0

| B 1

| c 0

| A 2

InstanceResolutionTable:

‘ SCMBInstance_Main* ‘ Instance Index#

| D | 0
| B | 1
| c | 2

When the encoder has built up these tables, it serializes the array of SCMOInstances in the following order:

Number of SCMOClasses following (Uint32)

The SCMOClass memory blocks listed in the ClassTable in the exact same order

Number of SCMOlInstances following (Uint32)

The contents of the InstanceToClassResolutionTable

Total number of external references (Uint32)

The contents of the InstanceResolutionTable

The SCMOIlnstance memory blocks listed in the InstanceToClassResolutionTable in the exact same order

Noaprwdp

Decoding

The decoder reinstantiates the Classes in memory and rebuilds the class table, where it now stores the
SCMBClass_Main pointers for the newly instantiated class memory blocks in the same order as they were 'decoded'.
It then reinstantiates the InstanceToClassResolutionTable and InstanceResolutionTable from the input buffer followed
by the Instances, where it replaces the SCMBInstance_Main pointers in the InstanceToClassResolutionTable with the
pointers to the new memory location of the reinstantiated instances.

For each instantiated instance the SCMOCIlass pointer is updated using the InstanceToClassResolutionTable:index into
the class table.

The pointers to the external references are restored the same way, using the InstanceResolutionTable.

Decoding relies on the fact that the decoding of instances occurs in the same order as the instances were added to the
resolution tables, so the n-th decoded instance matches entry #n in the InstanceToClassResolutionTable and the n-th
decoded referenced instance matches entry#n in the InstanceResolutionTable.

Whenever a reference to a Class or Instance is resolved by the decoder, it wraps the SCMBClass_Main or
SCMBInstance_Main with a new SCMOCIlass or SCMOlInstance object, which simply point to the SCMB pointer and
increase the refcount for the wrapped SCMB.

XmlIWriter updates and changes for efficent Xml generation from SCMO
objects

The new class SCMOXmIWriter inheriting from XmlIGenerator will be used to provide the functions necessary to
generate CIM-XML from SCMO objects. Duplication of functions will be avoided as much as possible, at the same time
the existing usage of XmIWriter will remain the same.

The following major functions from XmIWriter will be reimplemented in the SCMOXmIWTriter using SCMO objects as
input, so that the class CIMResponseData, which does generate the Xml from response objects(see fct's
encodeXmlResponse), can make use of them:

appendlnstanceNameElement()
appendlnstanceElement()
appendValueNamedlnstanceElement()
appendValueObjectWithPathElement()

Dependent functions using SCMO objects and data structures are made available as necessary and required by the

37 of 39 13.01.2010 12:23

PEP 348

38 of 39

file:///C:/Pegasus112/SCMO/PEP-348-SCMO_CMPI.html

beforementioned functions.

The implementation of SCMOXmIWriter will make heavy use of the fact that all values, property names etc. are not
only stored in the SCMO objects, but with their length known. This offers a performance advantage over the original
XmIWriter implementation as the length of strings written to the Buffer does not have to be calculated (avoid many
calls of strlen). For quick access to the data the SCMOXmIWriter will be friend to the SCMO classes (SCMOlnstance,

SCMOClass).

Rationale

Using a single chunk of memory to host CIM classes and CIM instances(SCMO objects), the allocation/deallocation
overhead is minimized.

At first SCMO is introduced for CMPI only to limit the amount of code changes and the C++ interface is not touched.
This is a good proof point for the SCMO data model and from there the usage of SCMO can be expanded.

Schedule

OpenPegasus 2.10

Discussion

1) This implementation of SCMO will not allow to add properties to an instance, which are not part of the class
definition.

2) The SCMOClass does not contain the definition of Methods. The target scenario (Provider --> delivery of instances)
for this SCMO does not need the implementation.

3) In the CMPI select expression the CIMInstance is used to host the CQL expression. This use case is not considered
in this design because CIMInstance is used as a helper tohost the expresseion. This may be a candidate for a First
Class Object.

4)What is the impact of this solution on

® CMPI C++ provider interface
® Remote CMPI
® |ndication Processing

Answer: The changes to the underlying implementation of the CMPI layer do NOT have any impact on providers using
the CMPI interface today. Due to this, neither Remote CMPI, nor the C++ CMPI extension require any change as they
are today implemented using the CMPI interface only.

Open Points

Future Items

1) Why don't we apply the same model to C++ interfaces so that it can create these objects? Do we have general set
of conversion functions to move from one model to another (ex. scmo model of object to C++ model, etc.)? While this
is inefficient, 1 would assume that it will be required since object will move freely around between providers, the
persistent store, and sinks like the response and indication output mechanisms.

2) A new class CIMRequestData used by the request messages could help improve the performance further by
avoiding the generation of C++ default objects which would need to be transformed to the SCMO format for CMPI
providers.

3) Adding full support for all CIM operations to make use of CIMResponseData. In that case, the CIMResponseData
could be moved from the leave response message classes to CIMResponseMessage.

4) Propose by Mike Brasher on Arch.Team call: Use a blocked model to reserve memory for the single chunk memory
objects to avoid usage of realloc(). Could chain those blocks together.

5) Propose by Mike Brasher on Arch.Team call: Have the CMPI layer use pointers into the SCMO objects instead of
having its own copies.Good doable in combination with 4) as reallocations (and thus invalidating those pointer) will
disappear.

Copyright (c) 2009 IBM Corp.

13.01.2010 12:23

PEP 348

39 of 39

file:///C:/Pegasus112/SCMO/PEP-348-SCMO_CMPI.html

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in

the Software without restriction, including without limitation the rights to

use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Template last modified: February 17 th 2009 by Martin Kirk
Template version: 1. 15

13.01.2010 12:23

