

OCPI

WBEM Server Benchmarks

Nortel Networks

Issue Date: December 3, 2003
Revision: 0.5
Document Status: Work in Progress
Document Number: ATI-2003.723
Issue A
Security Status: Open
Authors: Ying Zeng, Chris Hobbs, John Bell, Brian Quirt

Copyright Nortel Networks 2003

This document is the property of Nortel Networks who own the copyright therein.

12/3/03 Ocelot - CIMOM Benchmarks Page 2

 Nortel Networks

Revision History

Revision Number Date Comments

0.1 August 26, 2003 First draft
0.2 September 09, 2003 Introduction addition, changes

from the first review.
0.3 October 1, 2003 First set of result on class tests in

section 6.3.1, and test script re-
organization in section 5.2.2, and
re-addition of property operations
in section 4.2.2.

0.4 October 23, 2003 Addition of section 5.2.3, and
Appendix B - D. Update of
results for instance operations in
section 6.3.2 and 6.4.1.

0.5 October 24, 2003 General test condition update

Contributors

ATI, BCM OAM team

12/3/03 Ocelot - CIMOM Benchmarks Page 3

 Nortel Networks

Table of Contents

1 Introduction... 4
2 Choices of WBEM Implementations .. 6
3 General Benchmark Conditions .. 7
4 Benchmark Feature Specification ... 8

4.1 Repository Operations ... 8
4.1.1 CIM Class Operations... 9
4.1.2 CIM Instance Operations .. 10
4.1.3 CIM Property Operations.. 12
4.1.4 CIM Association Operations... 13
4.1.5 CIM Qualifier Operations ... 13
4.1.6 ExecQuery Operation ... 14

4.2 Provider Operations... 15
4.2.1 CIM Instance Operations .. 16
4.2.2 CIM Property Operations.. 16
4.2.3 CIM Association Operations... 17
4.2.4 CIM Extrinsic Method Operations.. 18

4.3 Indications ... 18
4.3.1 Indication Test Setup in openPegasus... 18

4.4 Client Library XML Encoding/Decoding.. 18
5 Benchmark Test Instrumentation and Implementation ... 20

5.1 Instrumentation.. 20
5.1.1 Option 1: Instrumentation at Client Session End.. 20
5.1.2 Option 2: Instrumentation at Client Protocol End... 20
5.1.3 Option 3: Instrumentation at CIMOM Server Protocol End ... 20
5.1.4 Option 4: Instrumentation using Binary Interface .. 21

5.2 Implementation.. 21
5.2.1 wbemexec Utility.. 21
5.2.2 Test Suite .. 21
5.2.3 Test Providers ... 24

6 Benchmark Results ... 28
6.1 HTTP Session Setup Time .. 28
6.2 HTTPS Session Setup Time .. 28
6.3 Repository Operations ... 28

6.3.1 Class Operations ... 28
6.3.2 Instance Operations... 42

6.4 Provider Operations... 49
6.4.1 Instance Operations... 49
6.4.2 Property Operations .. 55
6.4.3 Association Operations ... 55
6.4.4 Indication Operations.. 55

7 Future Work .. 56
8 References... 57
9 Appendix A - Sample XML Messages ... 58
10 Appendix B - Instrumentation in the wbemexec Utility ... 61
11 Appendix C - Bugs/Problems in WBEM Implementations .. 63
12 Appendix D - Sample Test Providers and MOFs.. 64

12.1 Sample MOF for Instance Provider Tests.. 64
12.2 OpenWBEM Sample Instance Provider for Condition A.. 65
12.3 OpenWBEM Sample Instance Provider for Condition B .. 68

12/3/03 Ocelot - CIMOM Benchmarks Page 4

Nortel Networks

1 Introduction

This document describes a methodology and a set of tests that have been constructed to
quantify the performance characteristics of systems that implement the CIM management
model. The purpose of these benchmarks is to provide the results necessary to compare
different implementations of a CIM system, as well as providing the data necessary to
determine if the resource budgets for target managed elements can be met.

Figure 1: Major CIM System Components

The major system components under consideration are the client/server protocol, the CIM
Server (or CIMOM), the repository and the CIM providers. The instrumentation interface
will reside at the CIM client.

The benchmarks will perform measurements along a number of different dimensions: the
latency for a set of CIM operations (where an operation describes a management - i.e.,
monitor or control - action on a CIM modeled resource); the in-memory requirements for
the CIM server; and the persistent-storage requirements for the repository. The
performance and storage requirements will be gauged by discretely varying the size of
the models and the number of instances in the system. The dimensions to be measured are
seen as external attributes of the system. Treating the system as a black box has the
advantage of being able to infer the properties of the system using external
instrumentation interfaces. This in turn means that the observations will have negligible
impact on the overall system performance while also providing the means to perform an
apples-to-apples comparison of different CIM implementations. This methodology allows
the various elements of a CIM system to be characterized and compared. For example,
changing the size of the model and the number of instances under consideration will
provide a clear indication of how efficient the object encoding is (the in-memory

CIM Server /
CIM Object
Manager

Repository

Cim-xml
Protocol

(standard)

Provider Interface
(Language APIs)

CIM
Client CIM

Client

CIM
Provider

CIM
Client

CIM
Provider CIM

Provider

12/3/03 Ocelot - CIMOM Benchmarks Page 5

 Nortel Networks

requirements), how efficient the object serialization is (the persistent-memory
requirements) and what effect varying these dimensions has on the observed performance
of CIM operations (the latency).

Table 1: Benchmark test sets for extrinsic method operations

CIM operations can be broken down into functional groups, each supporting a number of
set of method calls. The following table lists the functional groups a the operations
associated with each group. The benchmarks are designed to measure the performance
characteristics for all of the operations within each group. A further discrimination is
made between on those operations that are performed by both intrinsic methods and
extrinsic methods. (Intrinsic methods operate on the CIM model and are internal to the
CIM Server while extrinsic methods are executed by a provider.) Distinguishing between
intrinsic and extrinsic operations characterizes the performance overhead of invoking a
provider. A final set of tests characterize the performance of indication operations – of
particular interest here is what effect indication filters have on event delivery.

Functional Group CIM Operations

Basic Read

GetClass, EnumerateClasses,
EnumerateClassNames, GetInstance,
EnumerateInstances, EnumerateInstanceNames,
GetProperty

Basic Write SetProperty
Schema Manipulation CreateClass, ModifyClass, DeleteClass
Instance Manipulation CreateInstance, ModifyInstance, DeleteInstance
Association Traversal Associators, AssociatorNames, References,

ReferenceNames
Query ExecQuery
Qualifier Declaration GetQualifier, SetQualifier, DeleteQualifier,

EnumerateQualifier

12/3/03 Ocelot - CIMOM Benchmarks Page 6

Nortel Networks

2 Choices of WBEM Implementations

There are several choices of WBEM server implementations for benchmarks:

x OpenPegasus

This is an open source implementation driven by IBM, HP, EMC, etc. Currently this
implementation has a lot of activities and development work being done, and it attracts
much industrial attention. The advantages of this implementation are that the repository is
implemented in XML which is easy to debug, and that it also comes with a debug client.
However, the disadvantages are that the repository is way too large, and a few CIM
operations are NOT yet supported. The version used in the benchmark tests is release 2.2.

x OpenWBEM

This is an open source implementation driven by Center7. The openWBEM
implementation has a better architecture than openPegasus, and most of the CIM
operations are supported. It is also smaller in repository size and has a slightly better
memory footprint. However, the openWBEM implementation appears to have less
industrial interests at this point. The version used in the benchmark tests is release 2.0.6.

12/3/03 Ocelot - CIMOM Benchmarks Page 7

Nortel Networks

3 General Benchmark Conditions

Unless otherwise stated, all benchmark results described in this document were obtained
under the following conditions:

x Platform - Debian Linux running kernel 2.4.18; if available, all benchmark tests
will be performed on a PPC G4 machine.

x 100Mb/s LAN connection
x CPU speed - Pentium III 550MHz, 512KB CPU Cache, RAM size - 128MB
x WBEM client and WBEM server are running on the same computer
x WBEM client and WBEM server are running on different computers given that

the computers are connected with a 100bps Ethernet connection. The Ethernet
connection is shared with other traffic streams in order to simulate the internet
cloud.

x OpenPegasus WBEM server version - release 2.2
x OpenWBEM WBEM server version - release 2.0.6

Characteristic Value
Vendor_id GenuineIntel
CPU family 6
Model 7
Model name Pentium III (Katmai)
Stepping 3
CPU MHz 550MHz (548.630MHz)
Cache size 512KB
Fdiv_bug No
Hlt_bug No
F00f_bug No
Coma_bug No
Fpu yes
Fpu_exception yes
Cpuid level 2
Wp yes
Flags Fpu vme do pse tsc msr pae mce cx8 sep mtrr pge mca

cmov pat pse36 mmx fxsr sse
Bogomips 1094.45

Table 2: Processor Characteristics

12/3/03 Ocelot - CIMOM Benchmarks Page 8

Nortel Networks

4 Benchmark Feature Specification

The main goal of the benchmark tests is to evaluate the WBEM server performance with
respect to the normal CIM operations, including latency, size of executables and shared
libraries, size of the repository, CPU utilization and memory footprint.

The benchmark tests can be categorized into three groups:

1. CIM class, instance, property, association and qualifier operations on the
repository,

2. CIM instance, association, property and method invocation operations on a
provider,

3. process indication operations (the class indication and instance indication are not
yet supported in most of the WBEM/CIM implementations), and

4. ExecQuery

Note that for each type of CIM operation, the benchmark tests are divided by groups
depending on the varying factors of the tests. For example, the repository class operations
can be benchmarked against three factors: number of classes in the repository, class
inheritance and HTTP/HTTPS protocols. The benchmark tests are grouped according to
the conditions so that only one factor is varying at one time while all others are fixed.

4.1 Repository Operations

The operations on the repository include class operations, instance operations, association
operations and qualifier operations.

The repository implementations differ from each WBEM server implementations;
therefore, the benchmark tests consider the overall performance of the server and the
repository operations.

The following performance aspects are measured: latency of a request, size of the
repository, CPU utilization, and memory footprint.

12/3/03 Ocelot - CIMOM Benchmarks Page 9

 Nortel Networks

WBEM Server

Repository

WBEM Client
CIMXML/HTTP

Internal Interface

Figure 2: CIM Repository Operation Flow

4.1.1 CIM Class Operations

The class operations include five types of operations:

x GetClass

The GetClass operation retrieves the inheritance, properties, qualifiers and methods of the
specified class. An exception is thrown if the class does not exist. This is possibly the
only useful class operation to BCM.

x EnumerateClassNames

The EnumerateClassNames operation returns the class names excluding any qualifiers or
properties within the namespace specified in the request. This operation maybe used in
some cases in BCM.

x CreateClass

The CreateClass operation creates a new class in the namespace in the repository. If a
class with the same class name and the version number already exists, then a CIM
exception is thrown and the operation fails.

x DeleteClass

The DeleteClass operation removes a class from the given namespace in the repository. If
the class does not exist in the namespace, a CIM exception is thrown.

x ModifyClass

The ModifyClass operation modifies the properties and/or qualifiers of a class. Note that
some CIM implementations do NOT support ModifyClass feature yet.

12/3/03 Ocelot - CIMOM Benchmarks Page 10

 Nortel Networks

Since the BCM box uses mostly GetClass and occasionally EnumerateClassNames, we
will focus the benchmarks on these two operations.

The performance of the above operations is assumed to depend mainly on the number of
classes within the specified namespace. Therefore, the benchmarks are tested against the
number of classes in the namespace. The reasonable lower boundary for the benchmarks
would be around 120 classes. This is because the new class is extended either from the
CIM core models or from other standard CIM models which are extended from the core
models, and thus the classes in the core models are always presented in a namespace. A
reasonable upper boundary for number of classes in the repository is around 5000 classes.
This number may vary depending on the complexity of the models.

The class operations are also tested using CIMXML over HTTP and CIMXML over
HTTPS protocols, and the level of inheritance of a class.

The following tables capture the benchmark test groups for a class operation. The same
sets of the tests are repeated for all the CIM class operations.

Benchmark tests against scales
 Lower

boundary
 Upper

boundary
Number of
Classes in the
repository

120 500 1000 2000 3000 5000

Benchmark tests against qualifiers
 Lower

boundary
 Upper

boundary
Number of
qualifiers of a
class

10 100 150 200 250 300

Benchmark tests against protocols

CIMXML over HTTP/HTTPS given a fixed number
of classes

HTTP HTTPS

Table 3: Benchmark test sets for CIM class operations

4.1.2 CIM Instance Operations

There are six types of instance operations. The instance operation performance would
likely be affected by the number of classes in the repository, number of instances of a
class, number of keys of an instance and key types.

x EnumerateInstanceNames

12/3/03 Ocelot - CIMOM Benchmarks Page 11

 Nortel Networks

The EnumerateInstanceNames operation returns the CIM object path in a string format
including the namespace, class name and key property values of all instances of a
requested class.

x EnumerateInstances

The EnumerateInstances operation returns all the instances of a specified class. If there is
a filter condition specified in the request, only the specified properties of the instances
will be returned. The combination usage of LocalOnly and DeepInheritance
allows instances of the superclass(es) and/or the subclass(es) to be returned. But the
benchmark tests described in this document returns only the instances of the requested
class.

x CreateInstance

The CreateInstance operation creates an instance of a specified class in the repository. A
CIM exception is thrown if there is already an instance with the same key property value
or values.

x GetInstance

The GetInstance operation returns an instance with the specified key property values. All
the properties of the instance are returned. This operation is tested with
IncludeQualifiers field is set to TRUE.

x DeleteInstance

The DeleteInstance operation deletes an instance from the repository. A CIM exception is
thrown if the instance does not exist.

x ModifyInstance

The ModifyInstance operation changes the property or properties of an instance. Note
that the key properties of an instance cannot be changed and a CIM exception is thrown if
one attempts to change a key property.

The benchmark tests include only GetInstance, EnumerateInstanceNames and
EnumerateInstances operation as they are the only ones being used in BCM.

The instance operations are tested using the following benchmark tests:

Benchmark tests against scales
 Lower

boundary
 Upper

boundary
Number of instances of the
requested class given a fixed
number of classes in the

0 50 100 200 500 1000

12/3/03 Ocelot - CIMOM Benchmarks Page 12

 Nortel Networks

repository
Number of keys on an
instance given a fixed
number of instances of a
class

1 2 4 6 8 10

Benchmark tests against key types

Key Types String Integer

Benchmark tests against protocols

CIMXML over HTTP/HTTPS given a fixed number
of classes and a fixed number of instances of a class

HTTP HTTPS

Table 4: Benchmark test sets for CIM instance operations

4.1.3 CIM Property Operations

The property operations will not be used in BCM, and the related benchmark tests
are therefore omitted.

The property operations include two types of operations:

x GetProperty

The GetProperty operation returns the requested property value of a particular instance.

x SetProperty

The SetProperty operation modifies the requested property value of a particular instance.

Benchmark tests against scales
 Lower

boundary
 Upper

boundary
Number of instances of the
requested class given a fixed
number of classes in the
repository

0 10 50 200 500 1000

Number of properties on an
instance given a fixed
number of instances of a
class

1 5 10 20 30 50

Benchmark tests against property types

Property Types String Integer

Benchmark tests against protocols

CIMXML over HTTP/HTTPS given a fixed number
of classes and a fixed number of instances of a class

HTTP HTTPS

Table 5: Benchmark test sets for CIM property operations

12/3/03 Ocelot - CIMOM Benchmarks Page 13

 Nortel Networks

4.1.4 CIM Association Operations

The association operations will not be used in BCM, and the related benchmark
tests are therefore omitted.

The CIM association operations include four types of operations.

x Associators

The Associators operation returns a list of instances associated with a particular instance
or classes associated with a particular class.

x AssociatorNames

The AssociatorNames operation returns a list of names of instances associated with a
particular instance or class names associated with a particular class.

x References

The References operation returns a list of associations for a particular class or an
instance.

x ReferenceNames

The ReferenceNames operation returns a list of names of associations for a particular
class or an instance.

Benchmark tests against scales
 Lower

boundary
 Upper

boundary
Number of association
instances with fixed number
of classes in the repository

0 10 50 200 500 1000

???

Benchmark tests against protocols

CIMXML over HTTP/HTTPS given a fixed number
of association instances and a fixed number of
classes

HTTP HTTPS

Table 6: Benchmark test sets for CIM association operations

4.1.5 CIM Qualifier Operations

The qualifier operations will not be used in BCM, and the related benchmark tests
are therefore omitted.

12/3/03 Ocelot - CIMOM Benchmarks Page 14

 Nortel Networks

The qualifier operations retrieve and set the qualifier of a class in the repository. This set
of operations only applies to the repository.

x EnumerateQualifiers

The EnumerateQualifiers operation returns a list of qualifiers in the namespace.

x GetQualifier

The GetQualifier operation returns a qualifier from a given namespace.

x SetQualifier

The SetQualifier operation creates or modifies a particular qualifier in a given
namespace.

x DeleteQualifier

The DeleteQualifier operation removes a qualifier from a namespace.

Benchmark tests against scales
 Lower

boundary
 Upper

boundary
Number of Classes in the
repository

120 500 1000 2000 3000 5000

Number of qualifiers of the
requested class with fixed
number of classes in the
repository

2 10 30 50 100 200

Benchmark tests against protocols

CIMXML over HTTP/HTTPS given a fixed
number of qualifiers on a class and a fixed number
of classes

HTTP HTTPS

Table 7: Benchmark test sets for CIM qualifier operations

4.1.6 ExecQuery Operation

The ExecQuery operation will not be used in BCM, and the related benchmark tests
are therefore omitted.

The ExecQuery operation executes a database-style query on the classes and instances.

Benchmark tests against scales
 Lower

boundary
 Upper

boundary

12/3/03 Ocelot - CIMOM Benchmarks Page 15

 Nortel Networks

Number of Classes in the
repository

120 500 1000 2000 3000 5000

Number of instances of the
requested class given a
fixed number of classes in
the repository

0 10 50 200 500 1000

Benchmark tests against protocols

CIMXML over HTTP/HTTPS given a fixed
number of qualifiers on a class and a fixed number
of classes

HTTP HTTPS

Table 8: Benchmark test sets for ExecQuery operation

4.2 Provider Operations

The operations on the provider are similar to those on the repository except the exclusion
of class operations and qualifier operations. The normal provider operations include
instance operations, association operations, method invocations and property operations.
Note that the indication operation is a special type of provider operation, and it is covered
in the indication benchmark test section.

The following performance aspects are measured: latency of a request, size of the
repository, size of the shared libraries, CPU utilization, and memory footprint.

The provider benchmarks do not consider the specialty of the provider implementations,
and thus the providers used in the tests are designed to perform NULL operation and
immediately return with OK status.

Unless otherwise stated, all provider benchmarks are measured under the condition that
the provider shared libraries are loaded prior to the tests and thus the library initial
loading time is not considered.

WBEM Server

Provider

WBEM Client
CIMXML/HTTP

Provider Interface

Figure 3: CIM Provider Operation Flow

12/3/03 Ocelot - CIMOM Benchmarks Page 16

 Nortel Networks

4.2.1 CIM Instance Operations

There are six types of instance operations. The instance operation performance may be
affected by the number of classes in the repository, number of instances of a class,
number of keys of an instance and key types.

x EnumerateInstanceNames
x EnumerateInstances - least used
x CreateInstance
x GetInstance
x DeleteInstance
x ModifyInstance

The instance operations on a provider are similar to those of the instance operations on
the repository. The instance operations are tested using the following benchmark tests:

Benchmark tests against scales
 Lower

boundary
 Upper

boundary
Number of instances of the
requested class given a fixed
number of classes in the
repository

0 50 100 200 500 1000

Number of keys on an
instance given a fixed
number of instances of a
class

1 2 4 6 8 10

Benchmark tests against key types

Key Types String Integer

Benchmark tests against protocols

CIMXML over HTTP/HTTPS given a fixed number
of classes and a fixed number of instances of a class

HTTP HTTPS

Table 9: Benchmark test sets for CIM instance operations

4.2.2 CIM Property Operations

The property operations on a provider are similar to those on the repository and include
two types of operations:

x GetProperty
x SetProperty

Benchmark tests against scales

 Lower
boundary

 Upper
boundary

12/3/03 Ocelot - CIMOM Benchmarks Page 17

 Nortel Networks

Number of instances of the
requested class given a fixed
number of classes

0 10 50 200 500 1000

Number of properties on an
instance given a fixed
number of instances of a
class

1 5 10 20 30 50

Benchmark tests against property types

Property Types String Integer

Benchmark tests against protocols

CIMXML over HTTP/HTTPS given a fixed number
of classes and a fixed number of instances of a class

HTTP HTTPS

Table 10: Benchmark test sets for CIM property operations

4.2.3 CIM Association Operations

The association operations on a provider are similar to those on the repository and
include four types of operations:

x Associators
x AssociatorNames
x References
x ReferenceNames

Benchmark tests against scales
 Lower

boundary
 Upper

boundary
Number of association
instances with fixed number
of classes in the repository

0 500 1000 3000 4000 5000

Number of references
defined in the association
class

2 3 4

Benchmark tests against protocols

CIMXML over HTTP/HTTPS with fixed number of
association instances and fixed number of classes

HTTP HTTPS

Table 11: Benchmark test sets for CIM association operations

According to the spec., an association class can have more than two references
defined. However, the spec. does not provide descriptions on how enumerating
association and reference works. In the case of a four-way association, it is unclear
how the references are returned from a request of enumerating references. TODO

12/3/03 Ocelot - CIMOM Benchmarks Page 18

 Nortel Networks

4.2.4 CIM Extrinsic Method Operations

x InvokeMethod

The extrinsic method invocation operations are tested using the following benchmark
tests:

Benchmark tests against scales
 Lower

boundary
 Upper

boundary
Number input parameters
in the method invocation

0 1 2 5 10

Number of output
parameters in the method
invocation

0 1 2 5 10

Benchmark tests against parameter types

Types of the input/output parameters String Integer

Benchmark tests against protocols

CIMXML over HTTP/HTTPS HTTP HTTPS

Table 12: Benchmark test sets for extrinsic method operations

4.3 Indications

TODO

The indication tests measures the latency and throughput of indications. The latency does
NOT consider the delay of the handler to the client because the handlers are highly
customized by programmers.

4.3.1 Indication Test Setup in openPegasus

The indication tests are performed using the RT_Indication example provided by
openPegasus. The setup is shown as in the figure below:

FIGURE: TODO

4.4 Client Library XML Encoding/Decoding

This benchmark test is to evaluate the WBEM client XML encoding and decoding
performance using the client library provided by each WBEM implementation.

12/3/03 Ocelot - CIMOM Benchmarks Page 19

 Nortel Networks

Benchmark tests against request types

Request Type Simple operation Multiple operations

Table 13: Benchmark test sets for extrinsic method operations

12/3/03 Ocelot - CIMOM Benchmarks Page 20

Nortel Networks

5 Benchmark Test Instrumentation and Implementation

5.1 Instrumentation

There are two options of the instrumentation locations. Please see the diagram below

WBEM Server
WBEM Client

CIMXML/HTTP

Instrumentation Point 1
Including the HTTP
session setup sequence

Instrumentation Point 3

Instrumentation Point 2
Excluding session setup
sequence, but including HTTP
stack processing time

Figure 4: Instrumentation Points

5.1.1 Option 1: Instrumentation at Client Session End

The instrumentation at the client session end implies that the benchmark is the duration of
the period between the HTTP or HTTPS session is setup and the same session finishes.
This instrumentation provides benchmarks of overall performance of the CIM operations
over HTTP/HTTPS.

5.1.2 Option 2: Instrumentation at Client Protocol End

The instrumentation at the client protocol end implies that the benchmark is the duration
of the period between the CIMXML request is put onto a HTTP or HTTPS protocol stack
and the CIMXML response is received. This instrumentation provides benchmarks of
CIMOM operation performance without consideration of the HTTP/HTTPS session setup
procedures.

5.1.3 Option 3: Instrumentation at CIMOM Server Protocol End

The instrumentation at the CIMOM server protocol end implies that the benchmark is the
duration of the period between a CIMXML request is received by WBEM server and a

12/3/03 Ocelot - CIMOM Benchmarks Page 21

 Nortel Networks

CIMXML response is sent by the server. This operation considers only the server
operation benchmarks without any consideration of the CIMXML messaging and
HTTP/HTTPS session setup procedures. This instrumentation concerns mainly the
performance of WBEM server repository interface and provider interface. To work with
this option, one must insert the timestamps in the corresponding CIMOM server process.

5.1.4 Option 4: Instrumentation using Binary Interface

The instrumentation can also be done using the binary interface provided by some
CIMOM implementations. The binary instrumentation point is not shown in the figure,
but the measurement point would be on the backend of the client side.

5.2 Implementation

5.2.1 wbemexec Utility

OpenPegasus provides a command line utility called "wbemexec". This tool reads the
formatted CIMXML request from standard input, generates and sends a CIMXML
request to the WBEM server, receives the CIMXML response and print the response to
standard output. The wbemexec is a CIM client. Once a XML file containing a CIMXML
request is created, the wbemexec utility performs the following steps. The steps in red
refer to the timestamp insertion points for the benchmarks.

1. open the XML file
2. read the CIMXML request into a memory buffer
3. check for the XML syntax error
4. make a copy of CIMXML request
5. encapsulate XML into HTTP message
6. debug print the request message
x start timer at instrumentation point 1
7. connect to the WBEM server
x start timer at instrumentation point 2
8. send the CIMXML request and receive a CIMXML response
x stop timer for both instrumentation points
9. put the response into a buffer
10. format the response and write to standard output

A Perl script is written to repeatedly invoke the wbemexec utility for TODO times and
the benchmark result is the average time in a single invocation.

5.2.2 Test Suite

x Introduction

12/3/03 Ocelot - CIMOM Benchmarks Page 22

 Nortel Networks

The test suite is designed to allow the performance of an assortment of CIM servers to be
benchmarked. Any number of tests and/or test scripts may be written to examine
whatever performance aspects are desired. The scripts expect to have access to the
wbemexec command-line program (a part of OpenPegasus), in particular, a version
which has been modified to display how long the current request took to complete in the
form

 Operation took X.x/Y.y seconds

where X.x is the total number of seconds required (not including the time required to
connect to the server) and Y.y is the
total number of seconds required including the time required to connect to the server.
 The test suite is started by typing

 ./TestSuite.pl <Testfile>

at the command line, where <Testfile> is a file containing the tests to be run (its format
will be discussed later). The file "Script.txt" is included as a default file for the test suite.

x Directory Structure in CVS

 bcm/
cimBenchmarks/
 TestSuite.pl
 <TypeOfTest>Tests.txt
 openwbem/
 <TypeOfTest>/
 <TypeOfTest>Provider.cpp
 <TypeOfTest>Provider.h
 Makefile
 ...
 Pegasus/
 <TypeOfTest>/
 <TypeOfTest>Provider.cpp
 <TypeOfTest>Provider.h
 <TypeOfTest>ProviderMain.cpp
 Makefile
 ...
 repository/
 <TypeOfTest><Action>.pl
 ...
 provider/
 <TypeOfTest><Action>.pl
 ...
 xmlRequests/
 cimResponses/
 utils/
 XmlGen.pm

<TypeOfTest> can be "class", "instance", "property", "association" and "method"
depending on what type of CIM operation is tested. <Action> refers to "setup", "tests" or
"cleanup" of the specified type of CIM operation. For instance, the test scripts for the
instance operation with provider would be in directory bcm/cimBenchmark/provider,

12/3/03 Ocelot - CIMOM Benchmarks Page 23

 Nortel Networks

named as ClassSetup.pl, ClassTests.pl, and ClassCleanup.pl, and the provider code would
be in directory bcm/cimBenchmark/openwbem/instance. The sequence of setup, tests and
cleanup would allow one to produce a number of dummy classes, instances, or qualifiers
in order to achieve a certain set of discrete test points, to perform the corresponding tests
and finally to do the proper cleanup.

x Series format

The TestSuite.pl file invokes a series of tests by reading a script file. The script file
contains information about which tests are to be performed and is formatted as below:

 #lines starting with a ’#’ are comments
 #
 #Test Comment: <script> <command line options>
 #
 # Class setup options: <namespace> <dummyClassName>
 # <total#OfClassesInRep> <serverHostname>
 Example 1: ./repository/ClassSetup.pl root/widget DummyClass 5000
pkany216
 # Class test options: <repetitions> <namespace> <serverHostname>
 Example 2: ./repository/ClassTests.pl 100 root/widget pkany216
 # Class setup options: <namespace> <dummyClassName>
 # <total#OfClassesToClean> <serverHostname>
 Example 3: ./repository/ClassCleanup.pl root/widget DummyClass 4020
pkany216

Note that the test scripts are invoked just as if they were being invoked from a shell. Any
arguments after the test name are passed to the appropriate test script as command line
options.

x Test Script Format

Each individual test script may be in any format, as long as it adheres to the following
rules:

o It must be possible to invoke the script from the command line with any
needed options

o The test script must return an integer value which, when shifted 8 bits to
the left, indicates the number of errors which occurred when running the
scripts (EG if a script was run for 1000 repetitions and 4 of those
repetitions resulted in errors, the script would return (4 << 8). In the case
of a perl script, it would simply return 4).

The current test scripts are written in perl, and may serve as a template for any future test
scripts. They make use of the XmlGen perl module (which functions as an object) to
create an xml file which will be passed to wbemexec, and they then receive and interpret
the results.

x Error Checking

12/3/03 Ocelot - CIMOM Benchmarks Page 24

 Nortel Networks

The TestSuite.pl will, before anything is run, go through the test scripts and verify that
each file exists. Note that, as a result, a full path to any script file must be provided, since
the test script will not use $PATH when checking for existence.
During running, TestSuite.pl will report on how many errors were experienced by each
test.

x Some Sample Scripts
These scripts are not currently used in the benchmark tests. They are template scripts for
the new test scripts and located in the directory bcm/cimBenchmark/sampleScripts.

EnumerateClassNames.pl
Usage: EnumerateClassNames.pl <Repetitions> <Namespace>
Purpose: This script tests how long it takes to return a list of all classes in the current
namespace

CreateClass.pl
Usage: CreateClass.pl <Repetitions> <Namespace> <ClassName>
Purpose: This script creates classes ClassName0 to ClassNameN in the supplied
namespace where (N+1) is the number of repetitions.

CreateSubClass.pl
Usage: CreateSubClass.pl <Repetitions> <Namespace> <ClassName>
<SuperClass>
Purpose: This script creates classes ClassName0 to ClassNameN (N+1 is the number of
repetitions) in the supplied namespace, where all of the classes inherit from the supplied
SuperClass. The SuperClass must, of course, exist.

DeleteClass.pl
Usage: DeleteClass.pl <Repetitions> <Namespace> <ClassName> <Numeric>
Purpose: This script deletes the specified class in the specified namespace. If Numeric is
1, it will delete the classes ClassName0 to ClassNameN (where N+1 is the number of
repetitions). If Numeric is 0, it will delete ClassName.

GetClass.pl
Usage: GetClass.pl <Repetitions> <Namespace> <ClassName> <LocalOnly>
<IncludeOrigin> <IncludeQualifiers> <Numeric>
Purpose: This script retrieves information about the specified class. If Numeric is 1, it
will retrieve ClassName0 to ClassNameN (as per the other numeric scripts). If Numeric is
0, it will retrieve ClassName. LocalOnly, IncludeOrigin, and IncludeQualifiers are
all IPARAM’s to be passed to the cimserver. They take either TRUE or FALSE, and their
effect is as the effect of the equivalent IPARAM.

5.2.3 Test Providers

The tested providers include the instance provider, property provider, association
provider, method provider and indication provider.

12/3/03 Ocelot - CIMOM Benchmarks Page 25

 Nortel Networks

Usually, the actions inside the provider are highly customized depending on the features
of the managed element. Thus, the provider processing time varies greatly from
application to application. In order to obtain fair measurements of the provider interface
of different WBEM implementations, we designed the providers under the following
conditions.

Test condition A: The tests are to measure the CIMOM-provider interface latency,
without considering the provider internal processing time. Therefore, the provided
providers contain the minimum actions that are required to return a successful response
or to throw an exception immediately upon an incoming request. The providers do NOT
retain any instance/property/association data corresponding to the incoming request. The
test results listed in this section are obtained under this test condition. The sample
provider code can be found in the appendix D.

Test condition B: The providers are designed to perform minimum set of real actions.
For example, the instance provider retains a local array of instances and return a valid
instance upon a GetInstance request. The provider processing time is recorded and an
average of the provider processing time for each method is calculated at the end of the
test. The client-server roundtrip latency is measured using the total roundtrip latency
minus the provider processing time. The provider may also take measurement of the
memory usage and CPU usage. A BmDataClass is used to store the provider
processing time as its properties. Note that the tests under this condition are listed as
future work if effort allows.

For tests under condition B, a benchmark test class is defined to hold the latency data for
the provider processing. For example, the mof file below defines such a class:

[Description ("Benchmark Data Class")]
class BmDataClass : CIM_System
{
 [
 Description ("For benchmark test purpose. If its value is set to 1, "
 "it marks the end of the benchmark tests, and the provider will print "
 "the elapsed time for internal provider data processing")]
 uint32 TestProperty;

 [Description ("Elapsed time in usec for successful CreateInstance
opreations")]
 uint64 CiElapsedTime;

 [Description ("Elapsed time in usec for exceptions in CreateInstance
opreation")]
 uint64 ECiElapsedTime;

 [Description ("Elapsed time in usec for successful GetInstance opreations")]
 uint64 GiElapsedTime;

 [Description ("Elapsed time in usec for exceptions in GetInstance
opreation")]
 uint64 EGiElapsedTime;

 [Description ("Elapsed time in usec for successful EnumerateInstanceNames
opreations")]
 uint64 EnElapsedTime;

12/3/03 Ocelot - CIMOM Benchmarks Page 26

 Nortel Networks

 [Description ("Elapsed time in usec for exceptions in EnumerateInstanceNames
opreation")]
 uint64 EEnElapsedTime;

 [Description ("Elapsed time in usec for successful EnumerateInstances
opreations")]
 uint64 EiElapsedTime;

 [Description ("Elapsed time in usec for exceptions in EnumerateInstances
opreation")]
 uint64 EEiElapsedTime;

 [Description ("Elapsed time in usec for successful DeleteInstance
opreations")]
 uint64 DiElapsedTime;

 [Description ("Elapsed time in usec for exceptions in DeleteInstance
opreation")]
 uint64 EDiElapsedTime;

 [Description ("Elapsed time in usec for successful ModifyInstance
opreations")]
 uint64 MiElapsedTime;

 [Description ("Elapsed time in usec for exceptions in ModifyInstance
opreation")]
 uint64 EMiElapsedTime;

 [Description ("Number of successful CreateInstance operations")]
 uint32 CiCount;

 [Description ("Number of exceptions in CreateInstance operations")]
 uint32 ECiCount;

 [Description ("Number of successful GetInstance operations")]
 uint32 GiCount;

 [Description ("Number of exceptions in GetInstance operations")]
 uint32 EGiCount;

 [Description ("Number of successful EnumerateInstanceNames operations")]
 uint32 EnCount;

 [Description ("Number of exceptions in EnumerateInstanceNames operations")]
 uint32 EEnCount;

 [Description ("Number of successful EnumerateInstances operations")]
 uint32 EiCount;

 [Description ("Number of exceptions in EnumerateInstances operations")]
 uint32 EEiCount;

 [Description ("Number of successful ModifyInstance operations")]
 uint32 MiCount;

 [Description ("Number of exceptions in ModifyInstance operations")]
 uint32 EMiCount;

 [Description ("Number of successful DeleteInstance operations")]
 uint32 DiCount;

 [Description ("Number of exceptions in DeleteInstance operations")]
 uint32 EDiCount;
};

instance of BmDataClass
{
 CreationClassName="BmDataClass";
 Name="Benchmark";
 TestProperty="0";
 CiElapsedTime=0;
 ECiElapsedTime=0;

12/3/03 Ocelot - CIMOM Benchmarks Page 27

 Nortel Networks

 GiElapsedTime=0;
 EGiElapsedTime=0;
 EnElapsedTime=0;
 EEnElapsedTime=0;
 EiElapsedTime=0;
 EEiElapsedTime=0;
 MiElapsedTime=0;
 EMiElapsedTime=0;
 DiElapsedTime=0;
 EDiElapsedTime=0;
 CiCount=0;
 ECiCount=0;
 GiCount=0;
 EGiCount=0;
 EnCount=0;
 EEnCount=0;
 EiCount=0;
 EEiCount=0;
 MiCount=0;
 EMiCount=0;
 DiCount=0;
 EDiCount=0;
};

A sample provider method looks like the following:

CIMInstance GetInstance (…)
{
 mark startTime;
 inst = getInstance(BmDataClass.
 CreateClassName="BmDataClass",Name="Benchmark");
 // do real work
 mark endTime;
 inst.setProperty("Property", "value");
 modifyInstance(inst);
 return;
}

12/3/03 Ocelot - CIMOM Benchmarks Page 28

Nortel Networks

6 Benchmark Results

6.1 HTTP Session Setup Time

From the results of all tests, the HTTP session setup time for openPegasus server with the
server and client on the same machine is 2.35 msecr 0.02msec. The HTTP session setup
time on different machine is 5.5msecr 2.0msec. This value is not accurate because the
two test machines are connected to a LAN which is not dedicated to the benchmark tests.

The openWBEM server has HTTP session setup time around 3.0 msecr 0.1msec with the
server and client on the same machine, and 4.0 msecr 0.1msec with the server and client
on different machines.

The values listed in the following sections are the roundtrip time including the session
setup time.

6.2 HTTPS Session Setup Time

From the results of all tests, the HTTPS session setup time is TODO. The values listed in
the following sections are the roundtrip time including the session setup time.

6.3 Repository Operations

6.3.1 Class Operations

The class operations are tested with the following settings:

IncludeQualifiers = TRUE
IncludeClassOrigins = TRUE
LocalOnly = FALSE
DeepInheritance = FALSE

All roundtrip latency values use msec as unit and they are measured including the
HTTP/HTTPS session setup time.

Test 1: The test class is created with only the "Description" qualifier and with no super
class. The protocol is HTTP. The WBEM client and server are on the same machine.

Number of classes in the
repository

123 500 1000 2000 3000 4000 5000

GetClass 12.61 13.16 14.09 15.57 16.99 18.46 19.87
EnumerateClassNames 19.05 37.71 73.57 124.84 179.94 230.96 296.48
CreateClass 13.82 13.87 14.08 14.31 14.47 14.77 15.03
DeleteClass 13.23 14.46 16.37 19.73 22.98 26.30 29.65

12/3/03 Ocelot - CIMOM Benchmarks Page 29

 Nortel Networks

Test 2: The test class is created with CIM_System as super class and the qualifiers of
the super class are included in the get operation. Including the qualifiers inherited from
CIM_System, the test class has total 55 qualifiers. The protocol is HTTP. The WBEM
client and server are on the same machine. The server is openPegasus WBEM server.

Number of classes in the
repository

123 500 1000 2000 3000 4000 5000

EnumerateClassNames 19.41 37.64 72.97 124.06 179.74 230.43 294.32
CreateClass 87.33 87.49 87.51 87.95 88.34 88.72 88.91
GetClass 49.51 49.33 50.30 51.81 53.17 54.62 57.63
DeleteClass 31.12 32.46 34.37 37.68 41.39 44.82 47.73

Figure 5: openPegasus WBEM Server Class Operations against Number of Classes with
Server/Client on the Same Machine

Test 3: There are 1000 classes in the repository, 980 of which are from standard CIM
model and 20 of which are dummy ones. The test class is created as a subclass of a
certain superclass. The roundtrip latency time is measured against the total number of
properties and qualifiers of the tested class. The protocol is HTTP. The WBEM client and
server are on the same machine. The server is openPegasus WBEM server.

12/3/03 Ocelot - CIMOM Benchmarks Page 30

 Nortel Networks

Number of qualifiers in the
class

24 54 99 158 198 267

EnumerateClassNames 72.84 73.82 73.05 73.43 73.07 73.08
CreateClass 43.84 76.79 130.87 202.19 238.83 319.60
GetClass 30.01 48.64 76.81 113.51 132.12 178.34
DeleteClass 24.02 32.69 47.64 69.77 81.74 106.61

Figure 6: openPegasus WBEM Server Class Operations against Qualifiers with Server/Client on
Separate Machines

Test 4: The test class is created with CIM_System as super class and the qualifiers of
the super class are included in the get operation. Including the qualifiers inherited from
CIM_System, the test class has total 55 qualifiers. The protocol is HTTP. The WBEM
client and server are on the same machine. The server is openPegasus WBEM server.

Number of classes in the
repository

123 500 1000 2000 3000 4000 5000

EnumerateClassNames 17.38 36.70 82.93 129.92 186.32 237.98 305.34
CreateClass 77.61 75.48 76.76 76.14 78.06 76.89 76.56
GetClass 48.56 48.35 50.00 54.16 51.63 53.12 54.79
DeleteClass 29.15 29.08 35.21 35.49 39.51 43.82 45.58

12/3/03 Ocelot - CIMOM Benchmarks Page 31

 Nortel Networks

Figure 7: openPegasus WBEM Server Class Operations against Number of Classes with

Client/Server on the Same Machine

Test 5: There are 1000 classes in the repository, 980 of which are from standard CIM
model and 20 of which are dummy ones. The test class is created as a subclass of a
certain superclass. The roundtrip latency time is measured against the total number of
properties and qualifiers of the tested class. The protocol is HTTP. The WBEM client and
server are on different machine. The server is openPegasus WBEM server.

Number of qualifiers in the
class

24 54 99 158 198 267

EnumerateClassNames 74.37 74.13 75.14 73.79 73.62 72.84
CreateClass 43.81 75.74 129.51 200.84 239.12 332.00
GetClass 33.08 47.54 78.19 117.06 137.28 181.12
DeleteClass 26.31 32.00 49.92 71.44 85.11 110.05

12/3/03 Ocelot - CIMOM Benchmarks Page 32

 Nortel Networks

Figure 8: openPegasus WBEM Server Class Operations against Qualifiers with the Client/Server on

Separate Machines

Test 6: The test class is created with CIM_System as super class and the qualifiers of
the super class are included in the get operation. Including the qualifiers inherited from
CIM_System, the test class has total 55 qualifiers. The protocol is HTTP. The WBEM
client and server are on the same machine. The server is openWBEM server.

Number of classes in the
repository

123 500 1000 2000 3000 4000 5000

EnumerateClassNames 436.77 751.50 8751.26 9478.80 10194.40 10979.30 11715.07
CreateClass 34.64 35.05 44.30 44.33 44.19 44.30 44.40
GetClass 64.05 64.05 66.03 65.41 65.69 65.20 65.08
DeleteClass 21.33 21.35 30.09 30.29 30.27 30.25 30.51

12/3/03 Ocelot - CIMOM Benchmarks Page 33

 Nortel Networks

Figure 9: openWBEM Server Class Operations against Number of Classes with Client/Server on the

Same Machine

12/3/03 Ocelot - CIMOM Benchmarks Page 34

 Nortel Networks

Test 7: There are 1000 classes in the repository, 980 of which are from standard CIM
model and 20 of which are dummy ones. The test class is created as a subclass of a
certain superclass. The roundtrip latency time is measured against the total number of
properties and qualifiers of the tested class. The protocol is HTTP. The WBEM client and
server are on the same machine. The server is openWBEM server.

Number of qualifiers in the
class

24 37 55 105 163 203 272

EnumerateClassNames 8731.16 8732.16 8748.58 8730.75 8733.46 8726.25 8719.29
CreateClass 35.16 40.60 44.30 56.88 111.59 165.61 303.32
GetClass 22.90 30.11 64.80 51.33 81.22 102.85 127.75
DeleteClass 29.78 29.77 30.09 29.85 30.13 30.32 30.35

Figure 10: openWBEM Server Class Operations against Number of Qualifiers with Client/Server on

the Same Machine

Test 8: The test class is created with CIM_System as super class and the qualifiers of
the super class are included in the get operation. Including the qualifiers inherited from
CIM_System, the test class has total 55 qualifiers. The protocol is HTTP. The WBEM
client and server are on different machine. The server is openWBEM server.

Number of classes in the
repository

1000 2000 3000 4000 5000

EnumerateClassNames 8642.33 9372.08 10113.39 10852.44 11600.98
CreateClass 40.02 40.42 39.96 40.20 40.35
GetClass 30.65 30.97 30.82 30.79 30.76
DeleteClass 27.71 27.75 26.34 27.30 27.53

12/3/03 Ocelot - CIMOM Benchmarks Page 35

 Nortel Networks

Figure 11: openWBEM Server Class Operations against Number of Classes with Client/Server on

the Separate Machines

12/3/03 Ocelot - CIMOM Benchmarks Page 36

 Nortel Networks

Test 9: There are 1000 classes in the repository, 980 of which are from standard CIM
model and 20 of which are dummy ones. The test class is created as a subclass of a
certain superclass. The roundtrip latency time is measured against the total number of
properties and qualifiers of the tested class. The protocol is HTTP. The WBEM client and
server are on different machines. The server is openWBEM server.

Number of qualifiers in the
class

24 55 104 163 203 272

EnumerateClassNames 8644.62 8641.06 8640.81 8638.56 8634.61 8628.82
CreateClass 31.87 40.11 53.62 109.84 163.37 300.52
GetClass 21.32 31.34 48.87 65.41 75.80 97.77
DeleteClass 26.32 27.49 28.35 28.40 27.76 28.80

Figure 12: openWBEM Server Class Operations against Number of Qualifiers with Client/Server on

the Separate Machines

Observations:

For the openPegasus WBEM server, all class operations behave linearly against some
factors.

EnumerateClassNames: This operation depends solely on the number of classes in the
repository. It does NOT depend on class inheritance or the number of qualifiers.

12/3/03 Ocelot - CIMOM Benchmarks Page 37

 Nortel Networks

GetClass: Based on the test environment settings, the GetClass operation depends greatly
on the number of qualifiers, because the GetClass operation returns the qualifiers of the
class itself and its superclass. For example, to get a class which is a subclass of
CIM_System takes nearly 37msec longer than that to get a class without any superclass
or any qualifier. The number of classes in the repository has very little effect on the
latency.

CreateClass: This operation depends greatly on the number of qualifiers. For example, to
create a class which is a subclass of CIM_System takes nearly 73msec longer than that
to create a class without any superclass or any qualifier. The number of classes in the
repository has very little effect on the latency.

DeleteClass: This operation depends greatly on the number of qualifiers and class
inheritance. For example, to delete a class which is a subclass of CIM_System takes
nearly 28msec longer than that to delete a class without any superclass or any qualifier.
The number of classes in the repository has very little effect on the latency.

For the openWBEM server, the behaviours of the class operations are similar to those of
the openPegasus, but there are a few noticeable differences.

The EnumerateClassNames latency increases linearly against number of classes in the
repository and does not depend on any other factors. The EnumerateClassNames
operation has significant longer latency for openWBEM server. This maybe related to the
repository implementation. Unlike the OpenPegasus who uses the plain XML files, the
openWBEM uses the binary database and the search process in all index (*.ndx) and data
(*.dat) files takes a longer period.

The number of classes in the repository does not affect the latency of CreateClass and
GetClass operations. Both latencies increase against the number of qualifiers in the
specified class. While the GetClass latency increases linearly, the CreateClass latency
seems to increase more significantly when the number of qualifiers in the class increases.

12/3/03 Ocelot - CIMOM Benchmarks Page 38

Nortel Networks

Comparisons:

Figure 13: Class Operation Comparison 1 - Client/Server on the Same Machine

12/3/03 Ocelot - CIMOM Benchmarks Page 39

 Nortel Networks

Figure 14: Class Operation Comparison 2 - Client/Server on the Separate Machines

12/3/03 Ocelot - CIMOM Benchmarks Page 40

 Nortel Networks

Figure 15: Class Operation Comparison 1 - Client/Server on the Same Machine

12/3/03 Ocelot - CIMOM Benchmarks Page 41

 Nortel Networks

Figure 16: Class Operation Comparison 2 - Client/Server on the Separate Machines

12/3/03 Ocelot - CIMOM Benchmarks Page 42

 Nortel Networks

6.3.2 Instance Operations

The instance operations are tested with the following settings:

IncludeQualifiers = FALSE
IncludeClassOrigins = FALSE
LocalOnly = FALSE
DeepInheritance = FALSE

All roundtrip latency values use msec as unit and they are measured including the
HTTP/HTTPS session setup time.

Test 1: Instance operations against number of keys of the instance, and the key type is
string. The test class is a subclass of CIM_EnabledLogicalElement. The protocol is
HTTP. The WBEM client and server are on the same machine. The server is openWBEM
server.

Number of keys in the
instance

1 2 4 6 8 10

CreateInstance 38.30 40.68 44.76 48.28 53.01 58.36
EnumerateInstanceNames 170.13 247.56 346.66 397.36 523.16 617.81
EnumerateInstances 815.79 942.16 1205.31 1457.01 1786.34 2081.13
GetInstance 36.66 36.61 38.95 41.62 44.97 47.63
ModifyInstance 48.75 47.74 53.93 59.02 65.39 72.10
DeleteInstance 42.43 42.56 46.58 50.88 55.22 60.40

Test 2: Instance operations against number of keys of the instance, and the key type is
uint32. The test class is a subclass of CIM_EnabledLogicalElement. The protocol is
HTTP. The WBEM client and server are on the same machine. The server is openWBEM
server.

Number of keys in the
instance

1 2 4 6 8 10

CreateInstance 38.45 39.85 42.99 45.86 49.78 54.09
EnumerateInstanceNames 169.52 250.88 306.81 404.19 523.91 620.24
EnumerateInstances 809.04 935.14 1199.18 1476.47 1749.59 2093.73
GetInstance 35.52 37.61 41.83 45.14 49.79 54.40
ModifyInstance 46.34 50.74 53.63 64.61 73.52 81.57
DeleteInstance 31.89 44.64 50.63 56.35 63.60 69.91

Test 3: Instance operations against number of keys of the instance, and the key type is
string. The test class is a subclass of CIM_EnabledLogicalElement. The protocol is
HTTP. The WBEM client and server are on the same machine. The server is openPegasus
server.

12/3/03 Ocelot - CIMOM Benchmarks Page 43

 Nortel Networks

Number of keys in the
instance

1 2 4 6 8 10

CreateInstance 97.36 104.54 135.83 151.29 183.37 197.73
EnumerateInstanceNames 76.05 90.07 147.78 176.76 237.86 270.46
EnumerateInstances 3929.09 3987.60 4148.43 4287.81 4464.81 4598.71
GetInstance 64.20 61.37 72.34 67.71 78.68 71.44
ModifyInstance 100.23 101.79 123.05 128.71 149.99 154.41
DeleteInstance 50.55 61.08 82.19 103.09 124.99 147.79

Test 4: Instance operations against number of keys of the instance, and the key type is
uint32. The test class is a subclass of CIM_EnabledLogicalElement. The protocol is
HTTP. The WBEM client and server are on the same machine. The server is openPegasus
server.

Number of keys in the
instance

1 2 4 6 8 10

CreateInstance 89.67 109.27 116.36 123.19 146.94 153.33
EnumerateInstanceNames 67.17 110.02 133.12 155.83 210.28 237.92
EnumerateInstances 3915.41 4010.27 4105.21 4251.51 4378.14 4523.48
GetInstance 60.84 74.18 69.22 64.37 74.90 67.95
ModifyInstance 94.45 111.17 112.55 113.71 131.29 131.80
DeleteInstance 46.27 52.92 65.63 78.38 91.86 106.52

Figure 17: Instance Operation Comparison 1 - Client/Server on the Same Machines

12/3/03 Ocelot - CIMOM Benchmarks Page 44

 Nortel Networks

Figure 18: Instance Operation Comparison 2 - Client/Server on the Same Machines

Figure 19: Instance Operation Comparison 3 - Client/Server on the Same Machine

12/3/03 Ocelot - CIMOM Benchmarks Page 45

 Nortel Networks

Figure 20: Instance Operation Comparison 4 - Client/Server on the Same Machine

Test 5: Instance operations against number of instances of the requested class, and the
key type is string. The test class is a subclass of CIM_EnabledLogicalElement and the
instance has four keys. The protocol is HTTP. The WBEM client and server are on the
same machine. The server is openWBEM server.

Number of keys in the
instance

0 50 100 200 500 1000

CreateInstance 35.21 35.16 35.62 35.54 36.25 37.14
EnumerateInstanceNames 13.37 189.07 336.84 653.33 1460.91 2935.62
EnumerateInstances 23.56 628.07 1191.72 2315.10 5790.18 11537.80
GetInstance 30.78 31.47 31.45 31.56 31.50 31.55
ModifyInstance 45.00 45.14 45.04 45.52 46.09 47.02
DeleteInstance 38.34 38.74 38.18 38.22 38.69 39.57

Test 6: Instance operations against number of instances of the requested class, and the
key type is uint32. The test class is a subclass of CIM_EnabledLogicalElement and the
instance has four keys. The protocol is HTTP. The WBEM client and server are on the
same machine. The server is openWBEM server.

Number of keys in the
instance

0 50 100 200 500 1000

CreateInstance 33.07 33.15 33.10 33.15 33.30 33.18
EnumerateInstanceNames 13.41 194.91 302.20 614.66 1485.66 1931.26

12/3/03 Ocelot - CIMOM Benchmarks Page 46

 Nortel Networks

EnumerateInstances 23.45 620.18 1197.85 2338.36 5770.42 11479.70
GetInstance 34.04 33.80 34.06 34.07 34.04 34.05
ModifyInstance 48.38 48.21 48.14 48.22 48.54 48.59
DeleteInstance 42.24 41.97 42.04 41.98 42.20 42.00

Test 7: Instance operations against number of instances of the requested class, and the
key type is string. The test class is a subclass of CIM_EnabledLogicalElement and the
instance has four keys. The protocol is HTTP. The WBEM client and server are on the
same machine. The server is openPegasus server.

Number of keys in the
instance

0 50 100 200 500 1000

CreateInstance 81.28 107.56 135.76 197.70 380.05 678.05
EnumerateInstanceNames 46.71 96.27 151.94 255.84 584.72 1137.98
EnumerateInstances 83.75 2119.74 4161.97 8296.74 20672.30 41263.00
GetInstance 72.60 72.97 72.30 72.43 72.60 116.22
ModifyInstance 99.19 111.03 123.16 148.83 226.07 354.00
DeleteInstance 24.71 53.86 82.02 143.99 325.58 625.30

Test 8: Instance operations against number of instances of the requested class, and the
key type is uint32. The test class is a subclass of CIM_EnabledLogicalElement and the
instance has four keys. The protocol is HTTP. The WBEM client and server are on the
same machine. The server is openPegasus server.

Number of keys in the
instance

0 50 100 200 500 1000

CreateInstance 73.64 96.05 116.48 162.25 295.74 515.34
EnumerateInstanceNames 37.59 85.75 133.21 228.94 526.02 1024.74
EnumerateInstances 77.18 2098.55 4125.32 8172.65 20510.60 40889.00
GetInstance 69.15 70.04 69.25 69.28 69.36 69.35
ModifyInstance 94.65 104.54 112.69 131.26 186.75 279.53
DeleteInstance 24.04 45.39 65.76 111.21 244.79 464.47

12/3/03 Ocelot - CIMOM Benchmarks Page 47

 Nortel Networks

Figure 21: Instance Operation Comparison 5 - Client/Server on the Same Machine

Figure 22: Instance Operation Comparison 6 - Client/Server on the Same Machine

12/3/03 Ocelot - CIMOM Benchmarks Page 48

 Nortel Networks

Figure 23: Instance Operation Comparison 7 - Client/Server on the Same Machine

Figure 24: Instance Operation Comparison 8 - Client/Server on the Same Machine

12/3/03 Ocelot - CIMOM Benchmarks Page 49

 Nortel Networks

6.4 Provider Operations

The test results listed in this section are obtained under test condition A described in
section 5.2.3. All latency units are in msec.

6.4.1 Instance Operations

6.4.1.1 Tests against States in openWBEM

Test 1: The provider returns a success response for all operations. The instance class is a
subclass of CIM_EnabledManagedElement and it has four keys whose type is
string. The WBEM server is openWBEM server.

The minimum actions required in the methods: EnumerateInstanceNames and
EnumerateInstances return empty list; the CreateInstance returns an CIMObjectPath from
the incoming instance; the GetInstance returns an instance constructed by the given
className; ModifyInstance and DeleteInstance immediately return with no action taken.

Test state The initial state

of the WBEM
server

The state of the
first-time provider
invocation after
the WBEM server
has been already
started for a while

The state after a
long provider
idle period if a
provider timeout
is defined

The normal
operation state

Library conditions The provider
library and the
request handler
library are NOT
loaded yet

The provider
library is NOT yet
loaded, but the
request handler
library is already
loaded

The provider
library is
previously
loaded and
unloaded. It is to
be RE-loaded,
while the request
handler library is
already loaded

Both provider
library and the
request library
are already
loaded

CreateInstance 103.85 43.55 35.23 29.34
EnumerateInstanceNames 53.06 24.86 18.50 12.64
EnumerateInstances 54.74 26.53 19.97 13.85
GetInstance 102.22 40.90 34.53 28.04
ModifyInstance 105.89 45.05 36.56 30.80
DeleteInstane 101.01 40.89 32.50 26.73

Test 2: The provider returns a success response for all operations. The instance class is a
subclass of CIM_EnabledManagedElement and it has four keys whose type is
uint32. The WBEM server is openWBEM server.

The minimum actions required in the methods: EnumerateInstanceNames and
EnumerateInstances return empty list; the CreateInstance returns an CIMObjectPath from

12/3/03 Ocelot - CIMOM Benchmarks Page 50

 Nortel Networks

the incoming instance; the GetInstance returns an instance constructed by the given
className; ModifyInstance and DeleteInstance immediately return with no action taken.

Test state The initial state

of the WBEM
server

The state of the
first-time provider
invocation after
the WBEM server
has been already
started for a while

The state after a
long provider
idle period if a
provider timeout
is defined

The normal
operation state

Library conditions The provider
library and the
request handler
library are NOT
loaded yet

The provider
library is NOT yet
loaded, but the
request handler
library is already
loaded

The provider
library is
previously
loaded and
unloaded. It is to
be RE-loaded,
while the request
handler library is
already loaded

Both provider
library and the
request library
are already
loaded

CreateInstance 101.75 41.21 33.51 28.12
EnumerateInstanceNames 52.73 24.82 18.48 12.64
EnumerateInstances 54.46 26.63 19.43 13.82
GetInstance 103.81 42.53 35.72 29.63
ModifyInstance 107.67 47.21 37.13 32.04
DeleteInstane 103.40 42.30 34.39 28.39

Test 3: The provider returns an exception for all operations. The instance class is a
subclass of CIM_EnabledManagedElement and it has four keys whose type is
string. The WBEM server is openWBEM server.

The minimum actions required in the methods: all operations performs no action except
to throw an FAILED exception with a message.

Test state The initial state

of the WBEM
server

The state of the
first-time provider
invocation after
the WBEM server
has been already
started for a while

The state after a
long provider
idle period if a
provider timeout
is defined

The normal
operation state

Library conditions The provider
library and the
request handler
library are NOT
loaded yet

The provider
library is NOT yet
loaded, but the
request handler
library is already
loaded

The provider
library is
previously
loaded and
unloaded. It is to
be RE-loaded,
while the request
handler library is
already loaded

Both provider
library and the
request library
are already
loaded

CreateInstance 61.34 33.39 26.91 20.42
EnumerateInstanceNames 51.69 23.77 17.33 11.20

12/3/03 Ocelot - CIMOM Benchmarks Page 51

 Nortel Networks

EnumerateInstances 53.58 25.75 18.57 13.23
GetInstance 55.80 27.48 21.05 14.57
ModifyInstance 56.42 28.05 20.95 14.86
DeleteInstane 54.49 26.12 19.56 13.63

Test 4: The provider returns an exception for all operations. The instance class is a
subclass of CIM_EnabledManagedElement and it has four keys whose type is
uint32. The WBEM server is openWBEM server.

The minimum actions required in the methods: all operations performs no action except
to throw an FAILED exception with a message.

Test state The initial state

of the WBEM
server

The state of the
first-time provider
invocation after
the WBEM server
has been already
started for a while

The state after a
long provider
idle period if a
provider timeout
is defined

The normal
operation state

Library conditions The provider
library and the
request handler
library are NOT
loaded yet

The provider
library is NOT yet
loaded, but the
request handler
library is already
loaded

The provider
library is
previously
loaded and
unloaded. It is to
be RE-loaded,
while the request
handler library is
already loaded

Both provider
library and the
request library
are already
loaded

CreateInstance 59.97 31.59 25.10 18.62
EnumerateInstanceNames 51.72 23.75 18.34 11.45
EnumerateInstances 53.83 25.74 19.18 13.09
GetInstance 57.75 28.96 22.45 16.19
ModifyInstance 58.01 29.59 23.02 16.43
DeleteInstane 56.23 27.91 21.28 14.76

6.4.1.2 Tests against Number of Keys in openWBEM

Test 1: The provider returns a success response for all operations. The instance class is a
subclass of CIM_EnabledManagedElement and it has four keys whose type is
string. The WBEM server is openWBEM server.

The minimum actions required in the methods: EnumerateInstanceNames and
EnumerateInstances return empty list; the CreateInstance returns an CIMObjectPath from
the incoming instance; the GetInstance returns an instance constructed by the given
className; ModifyInstance and DeleteInstance immediately return with no action taken.

12/3/03 Ocelot - CIMOM Benchmarks Page 52

 Nortel Networks

Number of keys in the
instance

1 2 4 6 8 10

CreateInstance 25.36 26.16 29.34 33.29 36.64 40.22
EnumerateInstanceNames 11.49 11.79 12.64 13.28 13.75 14.53
EnumerateInstances 13.26 13.51 13.85 14.56 15.60 16.64
GetInstance 26.19 26.85 28.04 29.65 31.23 32.51
ModifyInstance 28.42 29.01 30.80 32.55 33.98 36.04
DeleteInstance 24.49 25.09 26.73 28.17 29.71 31.71

Test 2: The provider returns an exception for all operations. The instance class is a
subclass of CIM_EnabledManagedElement and it has four keys whose type is
string. The WBEM server is openWBEM server.

The minimum actions required in the methods: all operations performs no action except
to throw an FAILED exception with a message.

Number of keys in the
instance

1 2 4 6 8 10

CreateInstance 16.30 17.90 20.42 24.00 27.36 30.70
EnumerateInstanceNames 11.46 11.47 11.20 11.34 11.33 11.24
EnumerateInstances 13.17 13.10 13.23 13.08 13.21 13.06
GetInstance 13.91 14.27 14.57 15.33 16.06 16.19
ModifyInstance 14.20 14.42 14.86 15.68 16.29 16.71
DeleteInstance 13.04 12.79 13.63 14.07 14.35 15.19

12/3/03 Ocelot - CIMOM Benchmarks Page 53

 Nortel Networks

Figure 25: openWBEM Provider Instance Operation - Key Type is String

Test 3: The provider returns a success response for all operations. The instance class is a
subclass of CIM_EnabledManagedElement and it has four keys whose type is
uint32. The WBEM server is openWBEM server.

The minimum actions required in the methods: EnumerateInstanceNames and
EnumerateInstances return empty list; the CreateInstance returns an CIMObjectPath from
the incoming instance; the GetInstance returns an instance constructed by the given
className; ModifyInstance and DeleteInstance immediately return with no action taken.

Number of keys in the
instance

1 2 4 6 8 10

CreateInstance 24.33 25.71 28.12 30.72 33.46 37.79
EnumerateInstanceNames 11.26 11.65 12.64 13.18 13.73 14.47
EnumerateInstances 13.05 13.27 13.82 14.69 15.53 16.35
GetInstance 26.47 27.25 29.63 31.77 33.83 36.05
ModifyInstance 28.60 29.80 32.04 34.88 36.85 39.19
DeleteInstance 24.92 26.04 28.39 31.01 33.33 35.91

12/3/03 Ocelot - CIMOM Benchmarks Page 54

 Nortel Networks

Test 4: The provider returns an exception for all operations. The instance class is a
subclass of CIM_EnabledManagedElement and it has four keys whose type is
uint32. The WBEM server is openWBEM server.

The minimum actions required in the methods: all operations performs no action except
to throw an FAILED exception with a message.

Number of keys in the
instance

1 2 4 6 8 10

CreateInstance 16.05 17.02 18.62 21.39 23.68 26.48
EnumerateInstanceNames 11.46 11.46 11.45 11.28 11.08 11.40
EnumerateInstances 13.10 12.95 13.09 13.03 13.16 13.16
GetInstance 14.37 14.66 16.19 17.71 18.54 20.00
ModifyInstance 14.42 15.84 16.43 18.10 18.86 20.14
DeleteInstance 13.02 13.50 14.76 16.54 17.61 19.20

Figure 26: openWBEM Provider Instance Operation - Key Type is Uint32

Under the test condition 1, the openPegasus server has the following results: TODO

12/3/03 Ocelot - CIMOM Benchmarks Page 55

 Nortel Networks

6.4.1.3 Tests in openPegasus

TODO: In Pegasus release 2.2, the providers are automatically unloaded after a very
short random timeout. This is a known bug and is expected to be fixed in release 2.3.
Thus, we are pending the bug fix and the provider tests for openPegasus are NOT
performed.

Notes (Nov. 27, 2003): Release 2.3 has been downloaded and installed. The initial tests
proved that the providers are NOT unloaded after a short random period. However,
extensive tests are required to verify the bug fix.

6.4.2 Property Operations

TODO

6.4.3 Association Operations

TODO

6.4.4 Indication Operations

TODO

12/3/03 Ocelot - CIMOM Benchmarks Page 56

Nortel Networks

7 Future Work

The benchmark tests described in previous sections are performed under the condition of
a single client connected to the WBEM server. The future work would include the
benchmark tests under the condition of multiple clients connected to a WBEM server
simultaneously. In this case, the throughput (how many messages per second) is
measured and the result is compared with that of a single client.

12/3/03 Ocelot - CIMOM Benchmarks Page 57

Nortel Networks

8 References

[1] Chris Hobbs, "Using Web-Based Enterprise Management", Nortel Networks, 2003.

[2] Chris Hobbs and Ying Zeng, "CIM Exploration – Writing a Pegasus CIM Provider",

IEEE Nortel Networks, October 2002.

[3] Ying Zeng, "Writing a CIM Provider in openWBEM", Nortel Networks, July 2003.

12/3/03 Ocelot - CIMOM Benchmarks Page 58

Nortel Networks

9 Appendix A - Sample XML Messages

Some sample XML requests for operations:

x EnumerateClassNames

The EnumerateClassNames operation returns the class names within the namespace
specified in the request. A sample request in CIMXML would be as follows:

<?xml version="1.0" ?>
<CIM CIMVERSION="2.0" DTDVERSION="2.0">
 <MESSAGE ID="7873" PROTOCOLVERSION="1.0">
 <SIMPLEREQ>
 <IMETHODCALL NAME="EnumerateClassNames">
 <LOCALNAMESPACEPATH>
 <NAMESPACE NAME="root"/>
 <NAMESPACE NAME="widget"/>
 </LOCALNAMESPACEPATH>
 <IPARAMVALUE NAME="DeepInheritance">
 <VALUE>TRUE</VALUE>
 </IPARAMVALUE>
 </IMETHODCALL>
 </SIMPLEREQ>
 </MESSAGE>
</CIM>

x CreateClass

The CreateClass operation create a new class in the namespace in the repository. A
sample request in CIMXML would be as follows:

<?xml version="1.0" encoding="utf-8" ?>
<CIM CIMVERSION="2.0" DTDVERSION="2.0">
 <MESSAGE ID="7" PROTOCOLVERSION="1.0">
 <SIMPLEREQ>
 <IMETHODCALL NAME="CreateClass">
 <LOCALNAMESPACEPATH>
 <NAMESPACE NAME="root"/>
 <NAMESPACE NAME="widget"/>
 </LOCALNAMESPACEPATH>
 <IPARAMVALUE NAME="NewClass">
 <CLASS NAME="BmTestClass" SUPERCLASS="CIM_System">
 <QUALIFIER NAME="Version" TYPE="string" >
 <VALUE>4.5.7</VALUE>
 </QUALIFIER>
 <QUALIFIER NAME="Description" TYPE="string" >
 <VALUE>Widget is a class which defines the Widget developed
 for use within all left-handed thronge units. Note that it
 should not be used as a superclass of any device which has
 been developed to support brillig dews.
 </VALUE>
 </QUALIFIER>
 <PROPERTY NAME="colour" TYPE="uint8" >
 <QUALIFIER NAME="Write" TYPE="boolean" >
 <VALUE>true</VALUE>
 </QUALIFIER>
 <QUALIFIER NAME="Description" TYPE="string" >
 <VALUE>Colour of the external box</VALUE>
 </QUALIFIER>
 <QUALIFIER NAME="ValueMap" TYPE="string" >
 <VALUE.ARRAY>

12/3/03 Ocelot - CIMOM Benchmarks Page 59

 Nortel Networks

 <VALUE>0</VALUE>
 <VALUE>1</VALUE>
 <VALUE>2</VALUE>
 </VALUE.ARRAY>
 </QUALIFIER>
 <QUALIFIER NAME="Values" TYPE="string" >
 <VALUE.ARRAY>
 <VALUE>Red</VALUE>
 <VALUE>Green</VALUE>
 <VALUE>Blue</VALUE>
 </VALUE.ARRAY>
 </QUALIFIER>
 </PROPERTY>
 <PROPERTY NAME="packetCounter" TYPE="uint64" >
 <QUALIFIER NAME="Read" TYPE="boolean" >
 <VALUE>true</VALUE>
 </QUALIFIER>
 <QUALIFIER NAME="Description" TYPE="string" >
 <VALUE>Counter of Transmitted Packets</VALUE>
 </QUALIFIER>
 </PROPERTY>
 <PROPERTY NAME="style" TYPE="uint8" >
 <QUALIFIER NAME="Write" TYPE="boolean" >
 <VALUE>true</VALUE>
 </QUALIFIER>
 <QUALIFIER NAME="Description" TYPE="string" >
 <VALUE>Style of the outer casing</VALUE>
 </QUALIFIER>
 <QUALIFIER NAME="ValueMap" TYPE="string" >
 <VALUE.ARRAY>
 <VALUE>0</VALUE>
 <VALUE>1</VALUE>
 <VALUE>2</VALUE>
 </VALUE.ARRAY>
 </QUALIFIER>
 <QUALIFIER NAME="Values" TYPE="string" >
 <VALUE.ARRAY><VALUE>Modern</VALUE>
 <VALUE>Classical</VALUE>
 <VALUE>Baroque</VALUE>
 </VALUE.ARRAY>
 </QUALIFIER>
 </PROPERTY>
 </CLASS>
 </IPARAMVALUE>
 </IMETHODCALL>
 </SIMPLEREQ>
 </MESSAGE>
</CIM>

x GetClass

The GetClass operation retrieve the inheritance, properties, qualifiers and methods of the
specified class. A sample CIMXML request is as follows:

<?xml version="1.0" encoding="utf-8" ?>
<CIM CIMVERSION="2.0" DTDVERSION="2.0">
 <MESSAGE ID="1001" PROTOCOLVERSION="1.0">
 <SIMPLEREQ>
 <IMETHODCALL NAME="GetClass">
 <LOCALNAMESPACEPATH>
 <NAMESPACE NAME="root"/>
 <NAMESPACE NAME="widget"/>
 </LOCALNAMESPACEPATH>
 <IPARAMVALUE NAME="ClassName">
 <CLASSNAME NAME="BmTestClass"/>
 </IPARAMVALUE>
 <IPARAMVALUE NAME="LocalOnly">
 <VALUE>FALSE</VALUE>

12/3/03 Ocelot - CIMOM Benchmarks Page 60

 Nortel Networks

 </IPARAMVALUE>
 <IPARAMVALUE NAME="IncludeQualifiers">
 <VALUE>TRUE</VALUE>
 </IPARAMVALUE>
 </IMETHODCALL>
 </SIMPLEREQ>
 </MESSAGE>
</CIM>

x DeleteClass

The DeleteClass operation removes a class from the given namespace in the repository. A
sample CIMXML request is as follows:

<?xml version="1.0" encoding="utf-8" ?>
<CIM CIMVERSION="2.0" DTDVERSION="2.0">
 <MESSAGE ID="1001" PROTOCOLVERSION="1.0">
 <SIMPLEREQ>
 <IMETHODCALL NAME="DeleteClass">
 <LOCALNAMESPACEPATH>
 <NAMESPACE NAME="root"/>
 <NAMESPACE NAME="widget"/>
 </LOCALNAMESPACEPATH>
 <IPARAMVALUE NAME="ClassName">
 <CLASSNAME NAME="BmTestClass"/>
 </IPARAMVALUE>
 </IMETHODCALL>
 </SIMPLEREQ>
 </MESSAGE>
</CIM>

12/3/03 Ocelot - CIMOM Benchmarks Page 61

Nortel Networks

10 Appendix B - Instrumentation in the wbemexec Utility

The wbemexec is a simple command line utility to read the CIMXML request from
standard input, send CIMXML message, receive the CIMXML response and output the
response to standard output. The following is the function (method) in which wbemexec
command sends CIMXML request and receives the CIMXML response.

/**

 Executes the command using HTTP. A CIM request encoded in XML is read
 from the input, and encapsulated in an HTTP request message. A channel
 is obtained for an HTTP connection, and the message is written to the
 channel. The response is written to the specified outPrintWriter, and
 consists of the CIM response encoded in XML.

 @param outPrintWriter the ostream to which output should be
 written
 @param errPrintWriter the ostream to which error output should be
 written

 @exception WbemExecException if an error is encountered in executing
 the command

 */
void WbemExecCommand::_executeHttp (ostream& outPrintWriter,
 ostream& errPrintWriter)
 throw (WbemExecException)
{
 Uint32 size;
 Array <Sint8> content;
 Array <Sint8> contentCopy;
 Array <Sint8> message;
 Array <Sint8> httpHeaders;
 Array <Sint8> httpResponse;
 WbemExecClient client;

 client.setTimeout(_timeout);

 // Read in the CIMXML request from a file and perform syntax checks, etc.
 // ……

 //
 // Make a copy of the content because the XmlParser constructor
 // modifies the text
 //
 contentCopy << content;

 XmlParser parser ((char*) contentCopy.getData ());

 // Here is the place to insert the timestamp as the beginning of the
operation

 try
 {
 _connectToServer(client, outPrintWriter);

 //
 // Encapsulate XML request in an HTTP request
 //
 message = XMLProcess::encapsulate(parser, _hostName,
 _useMPost, _useHTTP11,
 content, httpHeaders);
 if (_debugOutput1)
 {
 outPrintWriter << message.getData () << endl;
 }

12/3/03 Ocelot - CIMOM Benchmarks Page 62

 Nortel Networks

 }
 catch (XmlException& xe)
 {
 WbemExecException e(WbemExecException::INVALID_XML, xe.getMessage ());
 throw e;
 }
 catch (WbemExecException& e)
 {
 throw e;
 }
 catch (Exception& ex)
 {
 WbemExecException e(WbemExecException::CONNECT_FAIL, ex.getMessage ());
 throw e;
 }

 try
 {
 httpResponse = client.issueRequest(message);
 }
 catch (ConnectionTimeoutException& ex)
 {
 WbemExecException e
 (WbemExecException::TIMED_OUT);
 throw e;
 }
 catch (UnauthorizedAccess& ex)
 {
 WbemExecException e
 (WbemExecException::CONNECT_FAIL, ex.getMessage ());
 throw e;
 }
 catch (Exception& ex)
 {
 WbemExecException e
 (WbemExecException::CONNECT_FAIL, ex.getMessage ());
 throw e;
 }

 // Here is the place to insert the timestamp as the end of the operation

 //
 // Process the response message
 //
 _handleResponse(httpResponse, outPrintWriter, errPrintWriter);
}

A Perl script invokes the wbemexec command for n (n=10000?) times. The roundtrip
time is accumulated each time when the operation is successfully executed. When the
script finishes invoking wbemexec, the accumulated time is divided by the total number
of successful operations. The final result for a single roundtrip time would be the average
of the time from all the successful operations.

12/3/03 Ocelot - CIMOM Benchmarks Page 63

Nortel Networks

11 Appendix C - Bugs/Problems in WBEM Implementations

In this appendix, we created a list of bugs and potential problems with the WBEM
servers. The listed bugs and problems may not critical and some of them have
workarounds, but they can sometimes cause strange CIMOM behaviours or affect the
CIMOM performance significantly. Thus, we generated such a list to let developers be
aware of these problems.

 Problem Affected Features WBEM

Server
Status

1 The incoming instance key array
and property array were NOT
synchronized properly in CIMOM

CreateInstance in
repository

openWBEM
2.0.6

Bug/Fixed in 2.0.12

2 The incoming instance key array
and property array were NOT
synchronized properly in CIMOM

CreateInstance in provider openWBEM
2.0.6

Bug/Fixed in 2.0.12

3 The EnumerateClassNames
operation performs the
unnecessary de-serialization of
classes

EnumerateClassNames in
repository

openWBEM
2.0.6

Bug/Fixed 2.0.12

4 The repository is implemented
using XML files, which cause the
repository operations become very
inefficient when there are a large
number of class or instances

All repository operations
except
EnumerateClassNames,
EnumerateInstanceNames

openPegasus
2.2

Can be a big
potential problem
in future design;
good for debug but
not practical. No
current proposal on
fix.

5 The providers are unloaded in a
very short period of time
automatically in Pegasus.

All types of provider
operations including
indications

openPegasus
2.2

Bug/Fixed in
release 2.3; not yet
tested locally.

6 OpenPegasus allows a provider for
a standard CIM class, the
repository and the provider can
both have instance with the same
keys. The getInstance operation
returns two instances with the
same keys: one from repository
and one from the provider.

Instance operations in
repository and instance
provider

openPegasus
2.2

Not investigated
yet.

7 OpenPegasus repository do NOT
handle association functions of an
instance correctly

Association operations on
an instance in the
repository

openPegasus
2.2

Bug with Nortel’s
own fixes.

12/3/03 Ocelot - CIMOM Benchmarks Page 64

Nortel Networks

12 Appendix D - Sample Test Providers and MOFs

12.1 Sample MOF for Instance Provider Tests

[Description (
 "Benchmark Instance Provider Test"),
 provider("c++::InstanceProvider")]
class BM_4_str_Class : CIM_EnabledLogicalElement
 {
 [Key, Description("Key 1 for benchmark test")]
 string Key_1;

 [Key, Description("Key 2 for benchmark test")]
 string Key_2;

 [Key, Description("Key 3 for benchmark test")]
 string Key_3;

 [Key, Description("Key 4 for benchmark test")]
 string Key_4;

 [Min(0), Max(2),
 Description ("For benchmark test purpose. If its value is set to 0, "
 "then the provider processing elapsed time is accumulated. "
 "If its value is set to 1, "
 "it marks the end of the benchmark tests, and the provider will print "
 "the elapsed time for internal provider data processing. "
 "If the value is set to 2, then the elapsed time inside the provider is
reset to 0.")]
 uint32 testProperty;
 };

[Description (
 "Benchmark Instance Provider Test"),
 provider("c++::InstanceProvider")]
class BM_4_int_Class : CIM_EnabledLogicalElement
 {
 [Key, Description("Key 1 for benchmark test")]
 uint32 Key_1;

 [Key, Description("Key 2 for benchmark test")]
 uint32 Key_2;

 [Key, Description("Key 3 for benchmark test")]
 uint32 Key_3;

 [Key, Description("Key 4 for benchmark test")]
 uint32 Key_4;

 [Min(0), Max(2),
 Description ("For benchmark test purpose. If its value is set to 0, "
 "then the provider processing elapsed time is accumulated. "
 "If its value is set to 1, "
 "it marks the end of the benchmark tests, and the provider will print "
 "the elapsed time for internal provider data processing. "
 "If the value is set to 2, then the elapsed time inside the provider is
reset to 0.")]
 uint32 testProperty;
 };

12/3/03 Ocelot - CIMOM Benchmarks Page 65

 Nortel Networks

12.2 OpenWBEM Sample Instance Provider for Condition A

The following is an instance provider sample used in the instance provider tests under
condition A:

// ***
// file instanceProvider.cpp for class BmTestClass
// for the CIMOM benchmark tests
// written September 2003
// author Ying Zeng
// history
// v1.0 September 2003
// ***

#include "instanceProvider.h"

namespace
{

// ***
// class InstanceProvider
// method InstanceProvider
// purpose constructor
// ***

InstanceProvider::InstanceProvider(void)
 {
 return;
 }

// ***
// class InstanceProvider
// method ~InstanceProvider
// purpose destructor
// ***

InstanceProvider::~InstanceProvider(void)
 {
 return;
 }

// ***
// class InstanceProvider
// method initialize
// purpose initialises the environment
// reference
// input reference to originator of
// this provider’s CIMOM handle
// note called by the CIM server after we are
// created
// ***

void
InstanceProvider::initialize(const OW_ProviderEnvironmentIFCRef& env)
 {
 (void)env;

 return;
 }

// ***
// class InstanceProvider
// method cleanup
// purpose frees up all the memory that this
// provider has used
// note called by the CIM server before we are
// destroyed

12/3/03 Ocelot - CIMOM Benchmarks Page 66

 Nortel Networks

// ***

void InstanceProvider::cleanup()
 {
 return;
 }

// ***
// class InstanceProvider
// method enumInstanceNames
// purpose standard openWBEM function to handle
// the enumInstanceNames call
// input as defined by openWBEM
// output as defined by openWBEM
// ***

void InstanceProvider::enumInstanceNames(
 const OW_ProviderEnvironmentIFCRef& env,
 const OW_String& ns,
 const OW_String& className,
 OW_CIMObjectPathResultHandlerIFC& result,
 const OW_Bool& deep,
 const OW_CIMClass& cimClass)
 {
 // silly statements to get rid of compiler
 // warnings about unused variables

 (void)env;
 (void)deep;
 (void)cimClass;
 (void)className;
 (void)result;
 (void)ns;

 return;
 }

// ***
// class InstanceProvider
// method enumInstances
// purpose handle standard openWBEM enumInstances
// call
// input as defined by openWBEM
// output as defined by openWBEM
// ***

void InstanceProvider::enumInstances(
 const OW_ProviderEnvironmentIFCRef& env,
 const OW_String& ns,
 const OW_String& className,
 OW_CIMInstanceResultHandlerIFC& result,
 const OW_Bool& deep,
 const OW_CIMClass& cimClass,
 const OW_Bool& localOnly)
 {
 // silly statements to get rid of compiler
 // warnings about unused variables

 (void)env;
 (void)ns;
 (void)className;
 (void)result;
 (void)deep;
 (void)cimClass;
 (void)localOnly;

 return;
 }

// ***
// class InstanceProvider

12/3/03 Ocelot - CIMOM Benchmarks Page 67

 Nortel Networks

// method getInstance
// purpose standard openWBEM call for handling
// getInstance
// input as defined by openWBEM
// output as defined by openWBEM
// ***

OW_CIMInstance InstanceProvider::getInstance(
 const OW_ProviderEnvironmentIFCRef& env,
 const OW_String& ns,
 const OW_CIMObjectPath& instanceName,
 const OW_CIMClass& cimClass,
 const OW_Bool& localOnly)
 {
 // silly statements to get rid of compiler
 // warnings about unused variables
 (void)env;
 (void)ns;
 (void)instanceName;
 (void)cimClass;
 (void)localOnly;

 OW_CIMInstance rval = OW_CIMInstance(instanceName.getObjectName());
 rval.setClassName(instanceName.getObjectName());

 return rval;
 }

// ***
// class InstanceProvider
// method createInstance
// purpose standard openWBEM function for handling
// call to createInstance
// input as defined by openWBEM
// output as defined by openWBEM
// ***

OW_CIMObjectPath InstanceProvider::createInstance(
 const OW_ProviderEnvironmentIFCRef& env,
 const OW_String& ns,
 const OW_CIMInstance& cimInstance)
 {
 // silly statements to get rid of compiler
 // warnings about unused variables
 (void)env;
 (void)ns;
 (void)cimInstance;
 OW_CIMObjectPath op(ns, cimInstance);
 op.setKeys(cimInstance.getKeyValuePairs());

 return op;
 }

// ***
// class InstanceProvider
// method deleteInstance
// purpose standard openWBEM function for handling
// call to deleteInstance
// input as defined by openWBEM
// output as defined by openWBEM
// ***

void InstanceProvider::deleteInstance(
 const OW_ProviderEnvironmentIFCRef& env,
 const OW_String& ns,
 const OW_CIMObjectPath& cop)
 {
 // silly statements to get rid of compiler
 // warnings about unused variables

 (void)env;
 (void)ns;

12/3/03 Ocelot - CIMOM Benchmarks Page 68

 Nortel Networks

 (void)cop;

 return;
 }

// ***
// class InstanceProvider
// method modifyInstance
// purpose standard openWBEM function for handling
// call to modifyInstance
// input as defined by openWBEM
// output as defined by openWBEM
// ***

void InstanceProvider::modifyInstance(
 const OW_ProviderEnvironmentIFCRef& env,
 const OW_String& ns,
 const OW_CIMInstance& modifiedInstance)
 {
 // silly statements to get rid of compiler
 // warnings about unused variables
 (void)env;
 (void)ns;
 (void)modifiedInstance;

 return;
 }

}
// specify the actual provider library for the CIMOM
OW_PROVIDERFACTORY(InstanceProvider, InstanceProvider)

12.3 OpenWBEM Sample Instance Provider for Condition B

The following is an instance provider sample used in the instance provider tests under
condition B:

// ***
// file instanceProvider.cpp for class BmTestClass
// for the CIMOM benchmark tests
// written September 2003
// author Ying Zeng
// history
// v1.0 September 2003
// ***

#include "instanceProvider.h"

namespace
{

// ***
// class InstanceProvider
// method InstanceProvider
// purpose constructor
// ***

InstanceProvider::InstanceProvider(void)
 {
/*
 cout << "********** In constructor for InstanceProvider " <<
 " for the first time *********" << endl;
*/
 bmDataPath=OW_CIMObjectPath(dataclassname);

12/3/03 Ocelot - CIMOM Benchmarks Page 69

 Nortel Networks

 bmDataPath.addKey("Name", OW_CIMValue("Benchmark"));
 bmDataPath.addKey("CreationClassName", OW_CIMValue(dataclassname));
 FILE *fp;
 fp = fopen("/usr/local/lib/openwbem/c++providers/bmResult.txt","w");
 fclose(fp);

 }

// ***
// class InstanceProvider
// method ~InstanceProvider
// purpose destructor
// ***

InstanceProvider::~InstanceProvider(void)
 {
/*
 cout<<"********** In InstanceProvider destructor **********"<<endl;
*/
 return;
 }

// ***
// class InstanceProvider
// method initialize
// purpose initialises the environment
// reference
// input reference to originator of
// this provider’s CIMOM handle
// note called by the CIM server after we are
// created
// ***

void
InstanceProvider::initialize(const OW_ProviderEnvironmentIFCRef& env)
 {
 (void)env;

 env->getLogger()->logDebug("InstanceProvider initialize called");
 cout<<"InstanceProvider::initialize"<<endl;
 myEnv = env;
 OW_CIMOMHandleIFCRef hdl = myEnv->getCIMOMHandle();
 OW_CIMInstance inst=hdl->getInstance(defaultns, bmDataPath);
 inst.setProperty("CiElapsedTime",OW_CIMValue(0));
 inst.setProperty("ECiElapsedTime", OW_CIMValue(0));
 inst.setProperty("GiElapsedTime", OW_CIMValue(0));
 inst.setProperty("EGiElapsedTime", OW_CIMValue(0));
 inst.setProperty("EnElapsedTime", OW_CIMValue(0));
 inst.setProperty("EEnElapsedTime", OW_CIMValue(0));
 inst.setProperty("EiElapsedTime", OW_CIMValue(0));
 inst.setProperty("EEiElapsedTime", OW_CIMValue(0));
 inst.setProperty("MiElapsedTime", OW_CIMValue(0));
 inst.setProperty("EMiElapsedTime", OW_CIMValue(0));
 inst.setProperty("DiElapsedTime", OW_CIMValue(0));
 inst.setProperty("EDiElapsedTime", OW_CIMValue(0));
 inst.setProperty("CiCount", OW_CIMValue(0));
 inst.setProperty("ECiCount", OW_CIMValue(0));
 inst.setProperty("GiCount", OW_CIMValue(0));
 inst.setProperty("EGiCount", OW_CIMValue(0));
 inst.setProperty("EnCount", OW_CIMValue(0));
 inst.setProperty("EEnCount", OW_CIMValue(0));
 inst.setProperty("EiCount", OW_CIMValue(0));
 inst.setProperty("EEiCount", OW_CIMValue(0));
 inst.setProperty("MiCount", OW_CIMValue(0));
 inst.setProperty("EMiCount", OW_CIMValue(0));
 inst.setProperty("DiCount", OW_CIMValue(0));
 inst.setProperty("EDiCount", OW_CIMValue(0));
 hdl->modifyInstance(defaultns, inst);

 return;
 }

12/3/03 Ocelot - CIMOM Benchmarks Page 70

 Nortel Networks

// ***
// class InstanceProvider
// method cleanup
// purpose frees up all the memory that this
// provider has used
// note called by the CIM server before we are
// destroyed
// ***

void InstanceProvider::cleanup()
 {

 myEnv->getLogger()->logDebug("InstanceProvider cleanup called");
 cout<<"InstanceProvider::cleanup"<<endl;

 }

// ***
// class InstanceProvider
// method enumInstanceNames
// purpose standard openWBEM function to handle
// the enumInstanceNames call
// input as defined by openWBEM
// output as defined by openWBEM
// ***

void InstanceProvider::enumInstanceNames(
 const OW_ProviderEnvironmentIFCRef& env,
 const OW_String& ns,
 const OW_String& className,
 OW_CIMObjectPathResultHandlerIFC& result,
 const OW_Bool& deep,
 const OW_CIMClass& cimClass)
 {
 // silly statements to get rid of compiler
 // warnings about unused variables

 (void)env;
 (void)deep;
 (void)cimClass;
 (void)className;
 (void)result;
 (void)ns;

 timeval startT;
 timeval endT;
 OW_UInt64 elapsedT;
 // OW_CIMObjectPath op;
 unsigned int i;

 //cout << "In InstanceProvider::enumInstanceNames " << endl;
 gettimeofday(&startT, NULL);
 OW_CIMOMHandleIFCRef hdl = myEnv->getCIMOMHandle();
 OW_CIMInstance inst = hdl->getInstance(defaultns, bmDataPath);

 for (i=0; i<myInstances.size(); i++)
 {
 OW_CIMObjectPath op(ns, myInstances[i]);
 result.handle(op);
 }

 OW_UInt32 n;
 inst.getProperty("EnCount").getValue().get(n);
 inst.setProperty("EnCount",OW_CIMValue(++n));
 OW_UInt64 t;
 inst.getProperty("EnElapsedTime").getValue().get(t);
 gettimeofday(&endT, NULL);
 elapsedT = (endT.tv_sec-startT.tv_sec)*10000000+endT.tv_usec-startT.tv_usec;
 inst.setProperty("EnElapsedTime",OW_CIMValue(t+elapsedT));
 hdl->modifyInstance(defaultns, inst);

 return;

12/3/03 Ocelot - CIMOM Benchmarks Page 71

 Nortel Networks

 }

// ***
// class InstanceProvider
// method enumInstances
// purpose handle standard openWBEM enumInstances
// call
// input as defined by openWBEM
// output as defined by openWBEM
// ***

void InstanceProvider::enumInstances(
 const OW_ProviderEnvironmentIFCRef& env,
 const OW_String& ns,
 const OW_String& className,
 OW_CIMInstanceResultHandlerIFC& result,
 const OW_Bool& deep,
 const OW_CIMClass& cimClass,
 const OW_Bool& localOnly)
 {
 // silly statements to get rid of compiler
 // warnings about unused variables

 (void)env;
 (void)ns;
 (void)className;
 (void)result;
 (void)deep;
 (void)cimClass;
 (void)localOnly;

 timeval startT;
 timeval endT;
 OW_UInt64 elapsedT;
 unsigned int i;

 //cout << "In InstanceProvider::enumInstances " << endl;
 gettimeofday(&startT, NULL);
 OW_CIMOMHandleIFCRef hdl = myEnv->getCIMOMHandle();
 OW_CIMInstance inst = hdl->getInstance(defaultns, bmDataPath);

 for (i=0; i<myInstances.size(); i++)
 {
 result.handle(myInstances[i]);
 }

 OW_UInt32 n;
 inst.getProperty("EiCount").getValue().get(n);
 inst.setProperty("EiCount",OW_CIMValue(++n));
 OW_UInt64 t;
 inst.getProperty("EiElapsedTime").getValue().get(t);
 gettimeofday(&endT, NULL);
 elapsedT = (endT.tv_sec-startT.tv_sec)*10000000+endT.tv_usec-startT.tv_usec;
 inst.setProperty("EiElapsedTime",OW_CIMValue(t+elapsedT));
 hdl->modifyInstance(defaultns, inst);

 return;
 }

// ***
// class InstanceProvider
// method getInstance
// purpose standard openWBEM call for handling
// getInstance
// input as defined by openWBEM
// output as defined by openWBEM
// ***

OW_CIMInstance InstanceProvider::getInstance(
 const OW_ProviderEnvironmentIFCRef& env,
 const OW_String& ns,

12/3/03 Ocelot - CIMOM Benchmarks Page 72

 Nortel Networks

 const OW_CIMObjectPath& instanceName,
 const OW_CIMClass& cimClass,
 const OW_Bool& localOnly)
 {
 // silly statements to get rid of compiler
 // warnings about unused variables
 (void)env;
 (void)ns;
 (void)instanceName;
 (void)cimClass;
 (void)localOnly;

 OW_CIMInstance rval = OW_CIMInstance(instanceName.getObjectName());
 rval.setClassName(instanceName.getObjectName());

 timeval startT;
 timeval endT;
 OW_UInt64 elapsedT;
 OW_CIMObjectPath op;
 unsigned int i;
 unsigned int flag=0;
 OW_CIMObjectPath tp;

 //cout << "In InstanceProvider::getInstance " << endl;
 gettimeofday(&startT, NULL);
 OW_CIMOMHandleIFCRef hdl = myEnv->getCIMOMHandle();
 OW_CIMInstance inst = hdl->getInstance(defaultns, bmDataPath);

 for (i=0; i<myInstances.size(); i++)
 {
 op=OW_CIMObjectPath(ns, myInstances[i]);
 // This is to avoid the default root namespace problem in openWBEM
 tp=instanceName;
 tp.setNameSpace(defaultns);
 if (op.equals(tp))
 {
 OW_UInt32 n;
 inst.getProperty("GiCount").getValue().get(n);
 inst.setProperty("GiCount",OW_CIMValue(++n));
 flag = 1; // found the instance
 rval= myInstances[i];
 break;
 }
 }

 if (flag ==0)
 {
 OW_UInt32 n;
 inst.getProperty("EGiCount").getValue().get(n);
 inst.setProperty("EGiCount", OW_CIMValue(++n));
 OW_UInt64 t;
 inst.getProperty("EGiElapsedTime").getValue().get(t);
 gettimeofday(&endT, NULL);
 elapsedT = (endT.tv_sec-startT.tv_sec)*10000000+endT.tv_usec-
startT.tv_usec;
 inst.setProperty("EGiElapsedTime", OW_CIMValue(t+elapsedT));
 hdl->modifyInstance(defaultns, inst);
 OW_THROWCIMMSG(OW_CIMException::NOT_FOUND,
 "The requested test instance is not found");
 }

 OW_UInt64 t;
 inst.getProperty("GiElapsedTime").getValue().get(t);
 gettimeofday(&endT, NULL);
 elapsedT = (endT.tv_sec-startT.tv_sec)*10000000+endT.tv_usec-startT.tv_usec;
 inst.setProperty("GiElapsedTime",OW_CIMValue(t+elapsedT));
 hdl->modifyInstance(defaultns, inst);

 return rval;
 }

// ***

12/3/03 Ocelot - CIMOM Benchmarks Page 73

 Nortel Networks

// class InstanceProvider
// method createInstance
// purpose standard openWBEM function for handling
// call to createInstance
// input as defined by openWBEM
// output as defined by openWBEM
// ***

OW_CIMObjectPath InstanceProvider::createInstance(
 const OW_ProviderEnvironmentIFCRef& env,
 const OW_String& ns,
 const OW_CIMInstance& cimInstance)
 {
 // silly statements to get rid of compiler
 // warnings about unused variables
 (void)env;
 (void)ns;
 (void)cimInstance;
 OW_CIMObjectPath op(ns, cimInstance);
 op.setKeys(cimInstance.getKeyValuePairs());

 timeval startT;
 timeval endT;
 OW_UInt64 elapsedT;
 OW_CIMObjectPath tmpop;
 unsigned int i;

 //cout << "In InstanceProvider::createInstance " << endl;
 gettimeofday(&startT, NULL);
 OW_CIMOMHandleIFCRef hdl = myEnv->getCIMOMHandle();
 OW_CIMInstance inst = hdl->getInstance(defaultns, bmDataPath);
 OW_CIMObjectPath op(ns, cimInstance);
 for (i=0; i<myInstances.size(); i++)
 {
 tmpop=OW_CIMObjectPath(ns, myInstances[i]);
 if (tmpop.equals(op))
 {
 OW_UInt32 n;
 inst.getProperty("ECiCount").getValue().get(n);
 inst.setProperty("ECiCount", OW_CIMValue(++n));
 OW_UInt64 t;
 inst.getProperty("ECiElapsedTime").getValue().get(t);
 gettimeofday(&endT, NULL);
 elapsedT = (endT.tv_sec-startT.tv_sec)*10000000+endT.tv_usec-
startT.tv_usec;
 inst.setProperty("ECiElapsedTime", OW_CIMValue(t+elapsedT));
 hdl->modifyInstance(defaultns, inst);
 OW_THROWCIMMSG(OW_CIMException::ALREADY_EXISTS,
 "Unable to create instance: instance already exists");
 }
 }

 myInstances.append(cimInstance);
 OW_UInt32 n;
 inst.getProperty("CiCount").getValue().get(n);
 inst.setProperty("CiCount",OW_CIMValue(++n));
 OW_UInt64 t;
 inst.getProperty("CiElapsedTime").getValue().get(t);
 gettimeofday(&endT, NULL);
 elapsedT = (endT.tv_sec-startT.tv_sec)*10000000+endT.tv_usec-startT.tv_usec;
 inst.setProperty("CiElapsedTime",OW_CIMValue(t+elapsedT));
 hdl->modifyInstance(defaultns, inst);

 return op;
 }

// ***
// class InstanceProvider
// method deleteInstance
// purpose standard openWBEM function for handling
// call to deleteInstance
// input as defined by openWBEM

12/3/03 Ocelot - CIMOM Benchmarks Page 74

 Nortel Networks

// output as defined by openWBEM
// ***

void InstanceProvider::deleteInstance(
 const OW_ProviderEnvironmentIFCRef& env,
 const OW_String& ns,
 const OW_CIMObjectPath& cop)
 {
 // silly statements to get rid of compiler
 // warnings about unused variables

 (void)env;
 (void)ns;
 (void)cop;

 timeval startT;
 timeval endT;
 OW_UInt64 elapsedT;
 unsigned int i;

 //cout << "In InstanceProvider::deleteInstance " << endl;
 gettimeofday(&startT, NULL);
 OW_CIMOMHandleIFCRef hdl = myEnv->getCIMOMHandle();
 OW_CIMInstance inst = hdl->getInstance(defaultns, bmDataPath);
 OW_CIMObjectPath tmpop = cop;
 tmpop.setNameSpace(ns);

 for (i=0; i<myInstances.size(); i++)
 {
 OW_CIMObjectPath op(ns, myInstances[i]);
 if (op.equals(tmpop))
 {
 myInstances.remove(i);
 OW_UInt32 n;
 inst.getProperty("DiCount").getValue().get(n);
 inst.setProperty("DiCount", OW_CIMValue(++n));
 OW_UInt64 t;
 inst.getProperty("DiElapsedTime").getValue().get(t);
 gettimeofday(&endT, NULL);
 elapsedT = (endT.tv_sec-startT.tv_sec)*10000000+endT.tv_usec-
startT.tv_usec;
 inst.setProperty("DiElapsedTime", OW_CIMValue(t+elapsedT));
 hdl->modifyInstance(defaultns, inst);
 return;
 }
 }
 OW_UInt32 n;
 inst.getProperty("EDiCount").getValue().get(n);
 inst.setProperty("EDiCount", OW_CIMValue(++n));
 OW_UInt64 t;
 inst.getProperty("EDiElapsedTime").getValue().get(t);
 gettimeofday(&endT, NULL);
 elapsedT = (endT.tv_sec-startT.tv_sec)*10000000+endT.tv_usec -
startT.tv_usec;;
 inst.setProperty("EDiElapsedTime", OW_CIMValue(t+elapsedT));
 hdl->modifyInstance(defaultns, inst);
 OW_THROWCIMMSG(OW_CIMException::FAILED,
 "Unable to delete the requested instance: instance not found");

 return;
 }

// ***
// class InstanceProvider
// method modifyInstance
// purpose standard openWBEM function for handling
// call to modifyInstance
// input as defined by openWBEM
// output as defined by openWBEM
// ***

void InstanceProvider::modifyInstance(

12/3/03 Ocelot - CIMOM Benchmarks Page 75

 Nortel Networks

 const OW_ProviderEnvironmentIFCRef& env,
 const OW_String& ns,
 const OW_CIMInstance& modifiedInstance)
 {
 // silly statements to get rid of compiler
 // warnings about unused variables
 (void)env;
 (void)ns;
 (void)modifiedInstance;

 timeval startT;
 timeval endT;
 OW_UInt64 elapsedT;
 unsigned int i;
 unsigned int flag=0;

 //cout << "In InstanceProvider::modifyInstance " << endl;
 gettimeofday(&startT, NULL);
 OW_CIMOMHandleIFCRef hdl = myEnv->getCIMOMHandle();
 OW_CIMInstance inst = hdl->getInstance(defaultns, bmDataPath);
 OW_CIMObjectPath op(defaultns, modifiedInstance);
 for (i=0; i<myInstances.size(); i++)
 {
 OW_CIMObjectPath tmp(defaultns, myInstances[i]);
 if (tmp.equals(op))
 {
 flag=1;
 myInstances[i].setProperties(modifiedInstance.getProperties());
 OW_UInt32 n;
 inst.getProperty("MiCount").getValue().get(n);
 inst.setProperty("MiCount", OW_CIMValue(++n));
 OW_UInt64 t;
 inst.getProperty("MiElapsedTime").getValue().get(t);
 gettimeofday(&endT, NULL);
 elapsedT = (endT.tv_sec-startT.tv_sec)*10000000+endT.tv_usec-
startT.tv_usec;
 inst.setProperty("MiElapsedTime", OW_CIMValue(t+elapsedT));
 hdl->modifyInstance(defaultns, inst);
 return;
 }
 }
 if (flag == 0)
 {
 OW_UInt32 n;
 inst.getProperty("EMiCount").getValue().get(n);
 inst.setProperty("EMiCount", OW_CIMValue(++n));
 OW_UInt64 t;
 inst.getProperty("EMiElapsedTime").getValue().get(t);
 gettimeofday(&endT, NULL);
 elapsedT = (endT.tv_sec-startT.tv_sec)*10000000+endT.tv_usec-
startT.tv_usec;
 inst.setProperty("EMiElapsedTime", OW_CIMValue(t+elapsedT));
 hdl->modifyInstance(defaultns, inst);
 OW_THROWCIMMSG(OW_CIMException::FAILED,
 "Unable to modify the requested instance: instance not found");
 }

 return;
 }

}
// specify the actual provider library for the CIMOM
OW_PROVIDERFACTORY(InstanceProvider, InstanceProvider)

