
Manageability Services
Broker

The Open Group Manageability
Working Group

Diverse Applications

Components are 'diverse' across
language
operating system
physical system
middlewares
networks
component protocols
corporations

Applications are critical to business
Requires manageability

Management today
Creating Application specific management
system
Creating their own agent type infrastructure

Have to learn management principles
Only do whats absolutly necessary
Often inferior design and capability
Can't be accessed by 3rd party management
systems

They would rather not write their own, they
would rather someone give them something
standard and free.

As management vendors...
We want to give them a manageability
infrastructure suitable for them to use for
their own specific management system.
We can access this infrastructure in terms
we understand.
We can be sure the infrastructure is reliable
with reasonable quality.
We can guide the application developers on
managability development

Consider elements of manageability (deploy,
install, cfg, metrics, ops, events,...)
How to expose these elements

The futures so bright...
As the standard manageability infrastructure
becomes pervasive, a vast 'distributed data base' of
management information accumulates and makes
more advanced and proactive management
applications possible
Sets the stage for much more interesting
management solutions

dynamic application networks
intelligent application networks
correlation
root cause analysis
automated recovery of failures, etc.

Management Services Broker
Instrumentation use directly by managed
resources
Adaption from instrumentation APIs
Connection into management systems
Plug&Swap manageability services

substitute required services
add support defined standard interface
add custom services/custom interfaces

Define minimum required services
Define common optional services
Based on DMTFs WBEM work

Success Factors

Easy for application developer
Flexible and able to support complex
applications
Investment protection for existing
instrumentation development (AIC, JMX)
Support emerging development models
(over traditional ones)
Involvement and support from industry

Standards Involvement
The Open Group Enterprise Management Program -
Manageability Work Group

Publisher of Spec
Publisher of Open Source Implementations

DMTF - CIM/WBEM
Use xmlCIM, HTTP/Ops, Schema
Model for runtime application management

OMG- Management SIG - interested in CORBA
based application management.

Same goals, can we cooperate?
Brings middleware vendors, distrib app vendors

OASIS - ebXML is being developed as a protocol and
basis for B2B applications.

We need to ensure that manageability of these
applications is being considered.

Corporation Involvement

Management Vendors: Tivoli, CA, BMC, HP,
Hitatchi(got these thru TOG/DMTF)
Middleware Vendors: IBM/WebSphere,
BEA, Oracle, Inprise, Iona
Development Tool Vendors: IBM/VisualAge,
JBroker, JBuilder, Symantec, etc.
Application Vendors:
Traditional: PeopleSoft, SAP
B2B: I2, Ariba, CommerceOne
Corporate: Boeing, UKPost, AmEx?,
Diamler-Chrysler?

SNMP
Conn

Tiv
Conn

JMX
Adapt

AIC
Adapt

Jmx
MR

Jmx
MR

Aic
mr

Aic
mr

Reg
Svc

Rel.
Svc

AppA
MO

AppB
MO

HP
Openview

TME

Java

C
/C

+
+

WBEM
Manageability
Services
Broker

Design Goals
Define very lightweight Broker
Allow dynamic pluggable services
Define minimal set required services
Broker and component location
independence
Must be able to manage complex,
distributed applications including corba
based, eBusiness (app server based), and
b2b applications.

Design Goals
The same interfaces should be able to be used for
feeding application specific managment system as
well as any interested enterprise managment
systems
All calls/messages to the broker should be sent to the
broker without any knowledge by the instrumentor
that a service will ultimately satisfy the call. It is the
brokers responsibility to map the call to the correct
service to handle it.
Might have multiple of the same services registered.

Design Goals

Instrumentation Interface:
EASY to understand and use by application developers
of below average skill.
code that needs to be inserted into the application must
be generateable by IDE's and wizards (DII type interfaces
make this easier).
should support CIM Schema based management objects
as well as schemaless management objects.
should be easily extensible.

 Affinity

Need a standard 'default' interface - XML over HTTP
Language: Need a way to 'negotiate' to communicate
in a language between two components of the same
language - Java or C, etc.
Location: Need a way to 'negotiate' remote
communication mechanism - In/out process, RMI,
Socket based, Corba based, message based, etc.
Schema: Allow to 'negotiate' if this is a schema or
schemaless communication

Required Standard Services

Service Management
Instance Management
Registration
MetaData
Delegation
Relationships
Query Static
Query Dynamic
Events

Required Standard Services

Service Mangement (NEW) (Broker)
addService(string serviceName, string
serviceInterfaceName, object NewService)
removeService(string serviceName)
queryService(string serviceInterfaceName)

Required Standard Services
(continued)

Instance Management (WBEM)
createInstance (object NewInstance)
getInstance(string instanceName, boolean
localOnly)
deleteInstance(string instanceName)
modifyInstance(NamedObject
modifiedInstance)
enumerateInstances(string ClassName,
boolean LocalOnly, boolean DeepInheritance)
enumerateInstanceNames(string ClassName)

Required Standard Services
(continued)

Registration (NEW)
Register an existing object as the management
object. Registrar may retain a handle to it, may
be local or remote.
register(object newInstance, string
instanceName)
unregister(string instanceName)

Required Standard Services
(continued)

MetaData (WBEM)
qualifierDecl getQualifier(string QualifierName)
setQualifier(qualifierDecl QualiferDeclaration)
deleteQualifier(string QualifierName)
qualifierDecl[] enumerateQualifiers ()

Required Standard Services
(continued)

Delegation (WBEM)
propertyValue getProperty(instanceName
InstanceName, string PropertyName)
setProperty(instanceName InstanceName,
string PropertyName,
propertyValue NewValue)
propertyValue[] enumerateProperties() (NEW)
(New) invokeMethod(string instanceName,
string MethodName, object[] methodParms)

Required Standard Services
(continued)

Relationships (WBEM)
objectWithPath[] associators(objectName ObjectName,
string AssocClass,string ResultClass, string Role, string
ResultRole)
objectWithPath[] associatorNames (objectName
ObjectName, string AssocClass,string ResultClass,
string Role, string ResultRole)
objectWithPath[] references(objectName ObjectName,
string ResultClass, string Role)
objectPath[] referenceNames(objectName ObjectName,
string ResultClass,string Role)

Required Standard Services
(continued)

Query Static (WBEM - query on static
information only)

object[] execQuery(string QueryLanguage,
string Query)

Query Dynamic (WBEM - allows query on
attribute values)

object[] execQuery(string QueryLanguage,
string Query)

Required Standard Services
(continued)

Event Delivery (WBEM)
publishEvent(Event)
subscribeEvent(Query)
unsubscribeEvent(Query)
data: eventID, severity, timestamp, text,

sequence#, originator

Optional Standard Services

Naming (now standard?)
Lookup (optional, but first rel.)
Discovery
Schema Service (optional?, first rel.)
Application Lifecycle
Transactions (optional, first rel.
Collections
Policy

Optional Standard Services
Internal

Bootstrap (Internal)
Persistence (Internal)
Caching (Internal)
Security (Internal)
Request Forwarding (Internal)

Application
Monitoring/Thresholding (App)
Logging (App)
Reporting (App)
Scheduling (App)

Optional Standard Services
Naming

boolean checkName(string
instanceName|className|serviceName
|serviceInterfaceName,enumeration
{instance|class|service|serviceInterface})

getName returns a valid Name for the component, if a
proposed name is passed in it returns the same name
if its was unique or a new or modified name if it was
not unique or valid.

string getName()
string getName(string
instanceName|className|serviceName|
serviceInterfaceName,enumeration
{instance|class|service|serviceInterface})

Optional Standard Services

Lookup (NEW)
find(broker|instanceName|className|
componentName|serviceName|
ManagedResourceName|etc)
find(namePattern,componentType,domain)
advertise(broker|instanceName|className|
componentName|serviceName|
ManagedResourceName|etc)

Discovery (NEW)
Is this a findAll discovery or a listenForNew
discovery? both? of Brokers? of Manageable
Resources? Both?

Optional Standard Services
Schema Service (WBEM)

createClass(object NewClass)
modifyClass (NamedObject modifiedClass)
getClass (string className, boolean
localOnly)
deleteClass (string className)
enumerateClasses(string ClassName, boolean
DeepInheritance, boolean LocalOnly)
enumerateClassNames(string ClassName,
boolean DeepInheritance)

Optional Standard Services

Application Lifecycle (NEW)
start(object[] options)
stop(object[] options)
status(object[] options)

Transactions (NEW)
startTransaction(transactionID)
endTransaction(transactionID)

Optional Standard Services
Collections (NEW)

dynamic collection (query based) issues events
to subscribers when members are
added/deleted. The collection listens for
lifecycle events from the broker.
createCollection(queryStatement)
createCollection(object[] instanceList)

Policy (NEW? Based on WBEM?)
setPolicy(policyRule)
getPolicy(policyRule)

Optional Standard Services
Bootstrap (NEW)

initFile(string fileName)
instantiateObjects(object[] objectList)
This would include instances, classes, or services.

Persistence (NEW)
load()
store()

Caching (NEW)
cacheValue()
getFromCache()
setCachePolicy()

Optional Standard Services

Security (NEW)
Request Forwarding (NEW)
forwardRequest(target)

Monitoring/Thresholding (NEW)
poll()
ping()
evaluateThreshold()

Service Capabilities Advertising

Basic Read: get/enumerate methods of Instance
Service, Schema Service, and Delegation Service
Basic Write: Basic Read + Delegation Service
Schema Manipulation: Instance Manipulation +
Schema Service
Instance Manipulation: Basic Write + InstanceService
Association Tranversal: Basic Write + Relationships
Query Execution: Basic Write + QueryStatic
Qualifier Declaration : Schema Manipulation +
MetaData Service

