
San Mateo Marriott
San Mateo, CANovember 14-17, 2011

Open Pegasus CIM Server

Part 2 – Advanced Topics
Karl Schopmeyer

Project Coordinator, Pegasus Open Source Project
k.schopmeyer@opengroup.org

V1.1 11/17/2011

This presentation will be available
on the MDC and OpenPegasus
web sites.

22

Agenda

• Part 1
– 1. What is

OpenPegasus?
– 2. What’s New?
– 3. Pegasus Features

Overview
– 4. Technical Subjects
– 5. How to use and work

with Pegasus
– 6. Issues
– 7. Discussion and

Feedback

• Part 2 –Advanced
Topics
– The Pull Operations
– Registering Pegasus

Providers
– CIM_Error
– Performance and

Resource Utilization
– Debugging in the

Pegasus Environment

If you have subjects for the advanced
topics we can try to get them on the list.

3

Part 2.1
Pull Operations

DMTF DSP0200 V 1.3

4

Goals Of the Pull Operations

• Parallel existing Enumeration Operations
• Remove deprecated functionality for new

operations
• Minimize gratuitous differences

– Ex. CIMObject vs. CIMInstance (returns instances)
• Create Pull operations for the Enumerates that

cause scalability problems
– Ignore Class and qualifier operations

• Grow error status definitions from existing error
status codes

• Keep single error per response philosophy
– A pull can return data OR an error status code

• Make new things optional

5

Concept Extensions
• Client sets max size of any pull (maxObjCount)
• Server returns that or fewer objects in response
• Client can terminate response before

enumeration exhausted (close operation)
• Filters allow server to filter out things not

interesting to client (Filter Language Not
Defined)
– Smarter processing, smaller responses

• Client can ask how big is this response
(optional)
– Return is an estimate not exact count

• Client makes decision on whether error
terminates enumeration. (ContinueOnError)

6

The New Operations

• Open Enumeration Operations
– OpenEnumerateInstances (EnumerateInstances)
– OpenEnumerateInstancePaths (EnumerateInstanceNames)
– OpenReferenceInstances (References)
– OpenReferenceInstancePaths (ReferenceNames)
– OpenAssociatorInstances (Associators)
– OpenAssociatorInstancePaths (AssociatorNames)
– OpenQueryInstances

• Pull Operations
– PullInstancesWithPaths
– PullInstancePaths
– PullInstances

• Other Operations
– CloseEnumeration
– EnumerationCount

7

Example: OpenEnumerateInstances
Operation

<instanceWithPath>> OpenEnumerateInstances (
[OUT] <enumerationContext> EnumerationContext
[OUT] Boolean EndOfSequence
[IN] <className> ClassName,
[IN,OPTIONAL] boolean DeepInheritance = true,
[IN,OPTIONAL] boolean IncludeClassOrigin = false,
[IN,OPTIONAL,NULL] string PropertyList [] = NULL,
[IN,OPTIONAL,NULL] string FilterQueryLanguage = NULL,
[IN,OPTIONAL,NULL] string FilterQuery = NULL,
[IN,OPTIONAL] uint32 OperationTimeout,
[IN,OPTIONAL] Boolean ContinueOnError = false,
[IN, OPTIONAL] uint32 MaxObjectCount = 0)

OpenEnumerateInstances

• Open new Enumeration. Response is the enumerationContext if the
server accepts the open.
•Properties parallel existing operations.
•New properties to allow filtering of objects by server
•Timeout defines time server MUST keep operation open between pulls
•ContinueOnError tells server whether to continue if any pull gets error

8

Common Parameters for Opens

• IN Parameters
– FilterQueryLanguage

• Future – Not yet defined
– FilterQuery

• Future
– OperationTimeout

• IntraOperation Timeout. Set by
client and modifiable by server.
Sets min time server must keep
context open between operations

– ContinueOnError
• Client requests server to continue

returning objects despite errors.
– MaxObjectCount

• Max count of objects server is to
return on this operation. Server
may modify this downward.
NOTE: 0 is legal.

• Out Parameters
– EndOfSequence

• Signals that server has
completed operations

– EnumerationContext
• Returned by server. Must be

supplied with pull and close
operations

9

Pull Example

<instanceWithPath>* PullInstancesWithPath (
[IN,OUT] <enumerationContext> EnumerationContext,
[IN] uint32 MaxObjectCount,
[OUT] Boolean EndOfSequence

)

PullInstancesWithPath

•Pull a defined number of instances for the defined
enumerationContext.
•Server may return up to the defined number of objects
•Server indicates enumeration exhausted with EndOfSequence
parameter
•Server returns 0 or more response objects or error status with:

•EnumerationContext and EndOfSequence indicator

10

Close Operation

void CloseEnumeration (
[IN] <enumerationContext> EnumerationContext

)

CloseEnumeration

Requests server to close an existing enumeration before the
enumeration is exhausted

11

Example: Instance Pull
sequence

• Client opens with
OpenEnumerateIndstances

• Server responds
– EndOfSequence = false
– Zero or more objects up to count

defined by maxObjects in
request

– EnumerationContext
• Client requests more

instances (CIMPullEnumerate)
– Enumeration context from open
– MaxObjects

• Server Responds
– EndOfSequence = false
– More objects
– EnumerationContext

• Client Pull request
• Server Responds

– EOS=True (indicates no more
objects after this response

– Zero or more objects

C
L
I
E
N
T

S
E
R
V
E
R

OpenEnumerateInstances (maxObjects)

Open Response, zero or more objects EOS=false, Enumcontext

PullInstances (contextId, maxObjects)

Pull Response, zero or more objects EOS=false, contextId

.

.

.
PullInstances (EnumContext, maxObjects)

Pull Response, zero or more objects EOS=True, contextId

12

Whats New In OpenPegasus

• Client API level
– Extend client for new pull operations

• New APIs correspond to CIM operations

• Extend Core server to handle new
operations

• NOTE: Works with existing Providers
• Iterator class for response processing

13

New Pegasus Client Operations

• Open
– Array<CIMInstance> openEnumerateInstances
– Array<CIMObjectPath> openEnumerateInstancePaths
– Array<CIMInstance> openReferenceInstances
– Array<CIMObjectPath> openReferenceInstancePaths
– Array<CIMInstance> openAssociatorInstances
– Array<CIMObjectPath> openAssociatorInstancePaths

• Pull
– Array<CIMInstance> pullInstancesWithPath
– Array<CIMObjectPath> pullInstancePaths

• Close
– void closeEnumeration

• Misc
– Uint64Arg enumerationCount

14

Inter OperationTimeouts

• Specified by client as part of open
• May be adjusted downward by server
• Represents minimum time server will keep context

open between client calls. Time from end of
previous operation to start of next operation.

• Each client call for a context restarts this timer.
• Client may update this without getting objects by

requesting 0 entities in request.
• const Uint32Arg& maxObjectCount = Uint32Arg(0)

15

maxObjectCount
Number of Objects Requested

• Client defines maximum number of objects client
wants

• Set on each operation (open and pull)
• NULL value not defined.
• Optional – If not provided, server set size.
• Server responses with the maxObjectCount or

fewer objects
• Client may request 0. Server returns no objects

but restarts the interOperation timer.

16

Differences

• Incorporate new parameters
– maxObjectCount
– Filter properties
– Operation Timeout
– OperationContext

• New Client types
– Uint32Arg – Allows handling Uint32 with NULL.
– OperationContext – new Class that provide opaque

handling of Client receive and send of the
OperationContext parameter

17

Overview of Pegasus CIM Operation
Responses

• Provider interfaces multithreaded
– Each CIM operation request gets its own thread

• Operation responses are incremental
– Provider can deliver one or more objects with each call

to deliver response objects.
• Responses are queued through serverand

aggregated for needs of delivery
• Provider delivery thread blocked to support

delivery.

Conclusion: Pegasus was largely ready to handle pull operations without
provider changes.

18

Pegasus Provider Response
Interface

• Each CIM Operation request type defines specific
handlers for responses

• Each CIM Operation call provides handler ref
• Each call gets Response Handler object

– Response calls are:
• hnd.processing() – start response
• hnd.deliver(…) – deliver one or more response entities

(CIMInstances, CIMObjects, CIMObjectpaths)
– deliver() interfaces have both single object and array definition.

• hnd.complete() – provider finished delivering

19

Enumerate Instances Example

void AssociationTestProvider::enumerateInstances(
const OperationContext& context,
const CIMObjectPath& classReference,
const Boolean includeQualifiers,
const Boolean includeClassOrigin,
const CIMPropertyList& propertyList,
InstanceResponseHandler& handler)

{
// Find the class corresponding to this instance

CIMName reqClassName = classReference.getClassName();
handler.processing();
for (Uint32 i = 0; i < _classTable.size() ; i++)
{

if (reqClassName == _classTable[i].className)
{

CDEBUG("Class found " << reqClassName);
for (Uint32 j = 0; j < _classTable[i].instances.size(); j++)
{

handler.deliver(_classTable[i].instances[j]);
}
handler.complete();
return;

}
}
throw CIMException(CIM_ERR_NOT_FOUND);

}

20

Original Response Flow through
Pegasus

Provider
Queue

Of
Response
Objects

for provider

Queues to limit set
by system. Then sends array

to next step

Operation
Dispatcher
Aggregator

XML
Encoder
(chunked)

Binary
Encoder

Aggregate
Responses from Multiple

provider Response arrays into
complete message

Chunk
Aggregator

Full
Message

Aggregator

Forward each Provider Array To XML encoder
CIMResponse message with array of objects.

Any UNSUPPORTED errors removed

XML
Encoder

(non chunked)

Deliver(..)
Blocked while any Chunked delivery

Occurs.

hnd.processing()

hnd.deliver(object)
hnd.deliver(Array(obj)
)

hnd.complete()

CIMResponse Message
Containing Array

21

Pull Response Flow through
Pegasus

Provider
Queue

Of
Response
Objects

for provider

Queues to
limit set (ex 100 objects)

By system. Then sends array
to next step

Operation
Dispatcher
Aggregator

Binary
Encoder

Aggregate
Responses from
Multiple provider
Response arrays

into complete
message

Pull
Aggregator

Full
Message

Aggregator

Add to array of
Objects for delivery waiting
Next pull request for enum

context.
Block provider if exceeds waiting

limit

XML
Encoder

Deliver(..)
Blocked if Operation Dispatcher

queue too large.

hnd.processing()

hnd.deliver(object)
hnd.deliver(Array(obj))

hnd.complete()

CIMResponse
Message

Containing
Array

Pull request
or close request

Operation
Dispatcher

Deliver operation
Response based on request

and what is in queue
Wait response until

maxObjects or
providersComplete

Operation
Dispatcher

Pull open
request Send request to

all providers
involved, set up
open response

and set up
context

22

Pull Operation provider interface
changes

• Current Pegasus version
– No changes to provider interface

• Future Pegasus update
– Extend provider interface for request filter

parameters.
– Add mechanism to cleanly close provider

delivery if pull operation closed.
– Tied to CMPI Specification update.

23

Issues with delivery

• Encourage providers to deliver small
quantities with each call. This is good
coding but not enforced.
– Delivering large quantities in single call

destroys Pegasus memory management
model.

• Possible issues
– Long blocking times on provider if client very

slow. Pull designed to control flow, not let client
play between pull calls.

24

Client API Similarities

• Follow same pattern of parameters but with
new parameters attached.

• All possibly optional parameters are at end.
• All errors handled by exception as with

existing model
• DIFFERENCES

– Enumerates deliver namedInstances (with
path)

– OpenAssociators/OpenReferences return
instances not objects. Providers will still create
objects (sadly)

25

The Pegasus Pull Client API - 1

Array<CIMInstance> openEnumerateInstances(
CIMEnumerationContext& enumerationContext,
Boolean& endOfSequence,
const CIMNamespaceName& nameSpace,
const CIMName& className,
const Boolean deepInheritance,
const Boolean includeClassOrigin,
const CIMPropertyList& propertyList = CIMPropertyList(),
const String& filterQueryLanguage = String::EMPTY,
const String& filterQuery = String::EMPTY,
const Uint32Arg& operationTimeout = Uint32Arg(),
const Boolean continueOnError = false,
const const Uint32Arg& maxObjectCount = Uint32Arg(0)
);

Other Open… APIs parallel the Enumerate

NEW

26

Pegasus Pull Apis

// Pull Instances with Paths

Array<CIMInstance> pullInstancesWithPath
(

CIMEnumerationContext& enumerationContext,
Boolean& endOfSequence,
const Uint32Arg& maxObjectCount = Uint32Arg(0)

);

// Pull Instance Paths

Array<CIMObjectPath> pullInstancePaths
(

CIMEnumerationContext& enumerationContext,
Boolean& endOfSequence,
const Uint32Arg& maxObjectCount = Uint32Arg(0)

);

27

Close API

void closeEnumeration
(

CIMEnumerationContext& enumerationContext
);

28

Simple Client Example
try

{
CIMNamespaceName nameSpace =
"root/SampleProvider";
String ClassName = "Sample_InstanceProviderClass";
Boolean deepInheritance = false;
Boolean includeClassOrigin = false;
Uint32Arg maxObjectCount = 100;
Boolean endOfSequence = false;
Uint32Arg operationTimeout(0);
Boolean continueOnError = false;
String filterQueryLanguage = String::EMPTY;
String filterQuery = String::EMPTY;
Array<CIMInstance> cimInstances;
CIMEnumerationContext ec;

cimInstances = client.openEnumerateInstances(
enumerationContext,
endOfSequence,
nameSpace,
ClassName,
deepInheritance,
includeClassOrigin,
CIMPropertyList(),
filterQueryLanguage,
filterQuery,
operationTimeout,
continueOnError,
maxObjectCount);

while (! endOfSequence)
{

Array<CIMInstance> cimInstancesTemp =
client.pullInstancesWithPath(

enumerationContext,
endOfSequence,
maxObjectCount);

cimInstances.appendArray(cimInstancesTe
mp);
}

}
catch (CIMException& e)
{

cerr << "CIMException Error: in
testEnumerationWithPull "

<< e.getMessage() << endl;
PEGASUS_TEST_ASSERT(false);

}
catch (Exception& e)
{

cerr << "Exception Error: in
testEnumerationWithPull "

<< e.getMessage() << endl;
PEGASUS_TEST_ASSERT(false);

}

29

Limitations for 2.11

• Block concurrent close
– Spec allows concurrency. We will not initially

• Server does not handle count operation
• May not include invokeMethod

– Internal Pegasus support does not include invoke
method

• No support for continue on error
– Concerns about the effects, not the implementation

• May not include iterating client interface
• No support for Filters

30

Future Directions

• Pegasus
– Extend so internal (cimom handle operations)

use Pull
– Possibly add count operation
– Add InvokeMethod
– Add Filters (After DMTF specification)

• DMTF Specification and Pegasus
– Deprecate non-pull Instance operations

• When DMTF deprecates them in specifications
– Add specification for filters to the pull

enumerations

Issues and Questions

• Server has capability to set several
perfomance parameters ex.:
– maxInteropTimeout
– systemMaxObjectCount
– maxConsecutiveZeroLengthPulls

• Proposal
– These will be compile time options

• Question
– Should any of these be runtime configuration

• i.e could an adminstrator make any use of these?

32

Part 2.2
Provider Registration

33

Provider Registration

• Not standardized in CIM today
– Original concept was the “provider” qualifier

• Used by some other CIM Servers today

– Goal
• Standard provider registration based on a provider registration

profile

• Pegasus uses a set of classes to register
providers
– Create instances of provider registration classes

(PG_providermodule, PG_provider, PG_provider capabilities)

– Registration can be static or dynamic
• Cimmof or cimmofl

34

Pegasus Provider Management

• Provider Installation
– Put provider library into Pegasus provider directory
– Register provider

• Provider Registration
– Create instances of provider registration classes
– Register by passing instances to Pegasus

• Dynamic (cimmof)
• Static (cimmofl)

• Dynamic provider state control
– Enable / disable (cimprovider utility)

35

Provider Registration Service

Provider
Manager

Provider
Registration

Manager

CIM Operation
Processor

Repository

Instance
Repository

Message
Dispatcher In

st
an

ce
O

pe
ra

tio
n

s

Control
Service

Provider
Registration

Provider

Update Provider
Status

Provider
Lookup

Start/Stop
Provider

In
st

an
ce

O
pe

ra
tio

n
s

In
st

an
ce

Pe
rs

is
te

n
ce

36

Provider Registration Classes

• PG_Provider
– Defines Provider module name (shared library)
– Defines user context for module
– Associates with Module & capabilities

• PG_ProviderModule
– Defines module name for provider
– Names provider

• PG_ProviderCapabilities
– Points to provider and provider module
– Defines provider type, Classname, etc.

See
Schemas/Pegasus/Interop/VER20

PG_ProviderModule20.mof

37

Provider
classname. One

per capability

Example, Instance Provider

instance of PG_ProviderModule
{

Description = “Implements Sample_InstanceProviderClass";
Caption = "Sample Pegasus Instance Provider Module";
Name = "SampleInstanceProviderModule";
Vendor = "OpenPegasus";
Version = "2.0.0";
InterfaceType = "C++Default";
InterfaceVersion = "2.1.0";
Location = "SampleInstanceProvider";

};

instance of PG_Provider
{

ProviderModuleName = "SampleInstanceProviderModule";
Name = "SampleInstanceProvider";

};

instance of PG_ProviderCapabilities
{

ProviderModuleName = "SampleInstanceProviderModule";
ProviderName = "SampleInstanceProvider";
CapabilityID = "SampleInstanceProvider";
ClassName = "Sample_InstanceProviderClass";
Namespaces = { "root/SampleProvider" };
ProviderType = { 2 };
SupportedProperties = NULL;
SupportedMethods = NULL;

};

Foreign keys
link module,

provider,
capabilities.

Limit to
namespaces
on this list.

Define types:
2 = Instance
3 = Assocation
4 = Indication
5 = method
6 = consumer
7 = instanceQuery

Limit properties
And methods

supported

38

Example Registration with
Makefile

1. Create namespace and install any base classes required.
2. Compile the Schema for the provider to be registered
3. Register the provider by compiling the registration mof
4. NOTE: Normally the registration MOF is same name as Schema with “R”

• Sample.mof SampleR.mof

cimmofl "-R$(REPOSITORY_DIR)" "-N$(REPOSITORY_NAME)" \
"-M$(REPOSITORY_MODE)“ \
"-n$(INTEROPNS)" SampleProviderSchemaR.mof

OR
cimmof "-n$(INTEROPNS)" SampleProviderSchemaR.mof

• See Examples in the sample and TestProvider Load
directories

• Confirm registration with cimprovider utility.

39

Part 2.3
Handling CIM_Error

And Standard Messages

40

Pegasus Status today

• CIM Error is supported
– Pegasus Client
– Pegasus Server (passing CIM_Errors as part of

responses
– Generating CIM_Error objects
– Provider Interfaces – Generating CIM Errors

• Usage minimal
• Testing

– End-end probably minimal because CIM_Error Class
was experimental for a long time

– Internal components part of standard test suite
• No work to date on standard messages

41

Pegasus Interface Extension

• Extended CIMException
– Allows an array of CIM_Error objects to be attached to

an exception
– Server/Provider add CIM_Errors to an exception
– Client takes them out if operation CIMException

executed.
– Client Driven Support

• getErrorCount()
– Return count of CIM_Error objects attached to exception

• getError(index)
» Get the error at the defined index

– Server and Provider driven support
• AddError()

– Adds a CIM_Error Object to an exception

C++ Provider example of
CIM_Error

• Build instance of
CIM_Error using
pegasus CIMError
class

• Define exception to
include the CIMError or
Array of CIMErrors

• Throw the exception
• NOTE: This uses the

Server exception class,
not the Provider
exception class.

42

Const char * OwningEntityName = “OpenPegasus”
// Define instance of CIMError
CIMError ErrInst(OwningEntityName,

“messageID”,
“This is the message”,
CIMError::PERCEIVED_SEVERITY_LOW,
CIMError::PROBABLE_CAUSE_OTHER,
CIMError::CIM_STATS_CODE_CIM_ERROR_FAILED);

// Create CIMException object
CIMException e(CIM_ERR_FAILED, “Test1 failed”,
e.getInstance());

// Throw the exception
throw e;

43

Client Example

• Getting CIM_Error objects from a response
Try
{

… Execute CIM Operation
}
Catch (CIMException& e)
{

for (Uint32 I = 0 ; I < e.getErrorCount() ; i++
CIMError err = e.getError(i);
// . . . Process err

}

44

Conclusions

• CMPI extended for CIM_Error today
• C++ Providers can use CIMException

extensions
• We can process multiple CIM_Errors

through system (provider, server, client)
• No support internally std msg based specific

errors

45

Core Objects

• Added new object as first class
representation of CIM_Error
– Src/Pegasus/General/CIMError.h /.cpp
– Creates CIM_Error object
– Provides getters and setters for all defined

properties
– Convert between CIMError C++ object and

CIM_Error instance

46

Part 2.5
Debugging your

Providers and Clients in
The Pegasus Environment

47

Testing And Pegasus

• Pegasus is well tested before release
– Unit tests, system tests, multiple system tests,

cho (long run duration tests).
– Head of all releasable CVS branches gets

tested every night (ex. 2.8-branch, …, head)
• Don’t immediately assume it is a

problem in Pegasus itself.
• Retest Pegasus itself through the

pegasus/Makefile driven tests
– Make world or Make; make tests, etc.

48

Tools for Debugging

• wbemexec (line test)
– wbmexec –d2 test.xml
– (examples of .xml files

are in tests/wetest)
• cimcli

– Execute cim operations
• Pegasus Logs
• Pegasus Traces
• Pegasus Client trace

• Debuggers
– Gdb
– Visual Studio

• Memory Tools
– valgrind

49

Wbemexec

• Issue requests to pegasus as xml
• Display xml responses
• Ex

– wbmexec –d2 test.xml
• Many examples in source code

– (see tests/wetest)
• Pro

– Test at xml level. Use to define xml issues
• Con

– Low level, difficult to create tests

50

XML request sample

<?xml version="1.0" ?>
<CIM CIMVERSION="2.0" DTDVERSION="2.0">
<MESSAGE ID="50000" PROTOCOLVERSION="1.0">
<SIMPLEREQ>
<IMETHODCALL NAME="EnumerateInstanceNames">
<LOCALNAMESPACEPATH>
<NAMESPACE NAME=“root"/>
<NAMESPACE NAME=“cimv2"/>
</LOCALNAMESPACEPATH>
<IPARAMVALUE NAME="ClassName">
<CLASSNAME NAME=“PG_OperatingSystem"/>
</IPARAMVALUE>
</IMETHODCALL>
</SIMPLEREQ>
</MESSAGE>
</CIM>

51

cimcli – execute operations

• Interactive CLI client that executes CIM
Operations

• Through 2.9
– Implements all of the read operations and

simplistic invoke method
• 2.10

– Implements Create, Modify, instance, correct
invokeMethod, testing responses, etc.

• Examples
– cimcli ni Person –enumerateinstance names
– cimcli ci Person ssn=1 first=karl last=schopmeyer

Cimcli (cont)

• Includes
– All CIM-XML operations except create/modify

class
– Some more general actions

• Get namespaces
• Get all instanceNames in a namespace
• Test instance against command line definition

• Limitations
– Command line

53

CIM Listeners

• Example code exists not a complete display
listener today

• Note: SimpleWbem has a command line
cimlistener that can be used.

54

Other test clients

• CIMNavigator
• CIMSurfer
• WSI client browser
• SNIA client browser
• pywbem

55

Logs

• Pegasus generates production log output
• Set logs to max level to get the most info
• Log destination is system dependent

– Windows – log files
– *nux – syslog

• Primarily production level issues
• BUT: In many cases the logs will tell you

what the problem is. Look at them

56

Pegasus Trace

• This is the core debugging tool in Pegasus
• Pegasus CIM Server is throughly

instrumented for trace output.
• Tracing is command line controllable
• There is now a memory based circular trace

– Lowers impact on server
– Avoids the enormous files that can occur with

disk trace.
• See PEP 315 & 316 For details

57

Setting Up for Trace

• Run Pegasus in the forground, not as a service or
daemon
– Windows – cimserver –help
– Linux – cimserver daemon=false

• Run with providers in-process
– Easier to debug than separate processes
– Typical good settings

• export PEGASUS_DEFAULT_ENABLE_OOP=false
• export PEGASUS_DISABLE_PRIVILEGED_TESTS=true
• export PEGASUS_DISABLE_PROV_USERCTXT=true

• Set the trace level and components
– Either permanent or on startup

• Isolate the action that is a problem and execute
this action by itself with trace

58

How to Generate Trace

• Set the trace component:
– bin/cimconfig –s traceComponents=Thread,ProvManager

• Logs the data in cimserver.trc (default) file
– Or file defined by config variable
traceFilePath

• Set the trace level:
– bin/cimconfig –s traceLevel=4

• Or set trace for current server start
– Cimserver traceComponents=All traceLevel=4

• See also mak/Buildmakefile for typical trace
configurations.

59

Trace Levels

• Each trace call has an associated level
• Different levels per trace (pre Pegasus 2.8)

– 0 – Tracing off (default)
– 1 - Function Entry/Exit
– 2 - Basic flow trace messages, low data detail
– 3 - Inter-function logic flow, medium data detail
– 4 - High data detail

• Levels Post 2.8 – Separated Entry/exit
– 0 – Tracing off (default)
– 1 – Severe and log messages
– 2 - Basic flow trace messages, low data detail
– 3 - Inter-function logic flow, medium data detail
– 4 - High data detail
– 5 – High data detail + Function Entry/Exit

60

List of Trace Components (2.10)

• racing is done per server
component (not per source file).

– Xml
– XmlIO
– Http
– Repository
– Dispatcher
– OsAbstraction
– Config
– IndicationHandler
– Authentication
– Authorization
– UserManager
– Shutdown
– Server
– IndicationService
– MessageQueueService
– ProviderManager
– ObjectResolution
– WQL

– CQL
– Thread
– CIMExportRequestDispatcher
– SSL
– CIMOMHandle
– L10N
– ExportClient
– Listener
– DiscardedData
– ProviderAgent
– IndicationFormatter
– StatisticalData
– CMPIProvider
– IndicationGeneration
– IndicationReceipt
– CMPIProviderInterface
– WsmServer
– LogMessages
– WMIMapperConsumer
– ControlProviderSee

src/Pegasus/Common/Tracer.cpp

61

Memory based trace

• Started 2.8 or 2.9 (See PEP 316)
– Circular cache in core
– Configuration variables

• traceMemoryBufferKbytes=<size of in-memory buffer in kB>

• traceFacility= (file,memory , log)

• If this memory is part of a dump the trace messages can be found by
the eye-catcher "PEGASUSMEMTRACE" at the top of the memory
buffer. The trace is in clear text and the last written message has the

suffix "EOTRACE".

• I think it also dumps the buffer on pegasus exit

62

Notes on reviewing trace

• Always trace the io (XmlIO) and discardedData
– XmlIO frames the rest of the trace
– You can see what is coming and going
– discardedData tells you when we throw things away

• Don’t trace function calls at first.
– Look at the data, not the flow

• If there are problems, look at the trace in the area
where the problem is occurring
– Look for keywords that could represent the issue

• Exception, error, etc.

63

Limitations

• We don’t support selective provider tracing.
• You can add traces to your provider but it all

goes into one big category
• It helps to understand the overall

architecture since this is the basis for the
component definition.

64

How to Understand Traces

• The major goals of tracing are:
– Confirm what is actually entering and leaving

the server
– See what providers are actually called
– Determine the data (operation, etc)flow

through the CIM Server
– Try to isolate what component made the

decision that impacts your issue

65

Trace Limitations

• High volume.
– Multi gb trace files are common

• Traces all functions
– The function trace has only a single level

• Developer oriented
– Without the source following much of the trace

is difficult (Except XmlIO)
– BUT – XmlIO, dispatcher, providerManager

define operation flow and most data

66

And after the trace, What??

• Here is where the fun begins
– Debuggers
– Core dumps
– Adding Trace points yourself
– Finally the dreaded printf(…)
– Specialized debug support

• Special malloc testers
• GNU exception backtrace
• ….

67

Pegasus Client trace

• Conditional compile in CIMClient.cpp
– export PEGASUS_CLIENT_TRACE_ENABLE=true
– Compile pegasus/src/Pegasus/Client

• When you run a client (ex. cimcli)
– source export PEGASUS_CLIENT_TRACE=both:both
– Then execute your client request:ex. cimcli ni myclass

• Will generate requests and responses
directly to console.

Memory Issues

• Commercial and OpenSource Tools
– Valgrind can be your friend
– We use valgrind extensively (memcheck)

• Regular tests of Pegasus against valgrind
– Nightly Pegasus tests

• First confirm Pegasus with std operations
– Then test your operation

Provider Only valgrind

• Build with out-of-process providers
• Replace cimprovagt with valgrind script
#!/bin/sh
Original Author: Tim Potter
move cimprovagt to cimprovagt.real
move this file to cimprovagt
#
mv /usr/sbin/cimprovagt /usr/sbin/cimprovagt.real
cp cimprovagt.wrapper /usr/sbin/cimprovagt

By default the script doesn't call valgrind - enable it by
creating a semaphore file of the form /tmp/$MODULE.valgrind where module
is the module name in the output of "cimprovider -l".

Or create a file /tmp/LogAll.valgrind which valgrinds all providers.

module=$5

VALGRIND_ARGS="--leak-check=yes --trace-children=yes --log-file=/tmp/$module.valgrind"

if [-e /tmp/$module.valgrind -o -e /tmp/LogAll.valgrind]; then
exec /usr/bin/valgrind $VALGRIND_ARGS \

/usr/sbin/cimprovagt.real "$@"
else

exec /usr/sbin/cimprovagt.real "$@"
fi

70

Finding Server Crashes

• Yes we sometimes get server crashes
• Dumps

– Turn on dump if possible
– Set debugging mode if possible
– Use the dumps and get stack trace info
– Communicate your issue with other pegasus users

• Memory based trace
– This can catch the last few server actions
– There is an extra load cost but not major

• Try to isolate your problem to a single operation

71

Questions & Discussion

?
We would like to get your feedback on issues, priorities,

users/usage, requests for OpenPegasus.
We would like to get your feedback on issues, priorities,

users/usage, requests for OpenPegasus.

